# **Interchange Modification Report**

### Hillsborough County, Florida

I-75 (SR 93A) at Gibsonton Drive Interchange

Financial Project Identification Number: 437650-2-22-01

### **Prepared For:**

Florida Department of Transportation, District 7 11201 McKinley Dr, Tampa, FL 33612



January, 2023



### SYSTEMS IMPLEMENTATION OFFICE

### QUALITY CONTROL CERTIFICATION FOR INTERCHANGE ACCESS REQUEST SUBMITTAL

| Submittal Date: 1/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>5/2023</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                   |                                                            |                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| WPI Segment No.: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 <u>37650-2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                   |                                                            |                                                                                                                          |
| Project Title: <u>I-75 (S</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R 93A) at Gibsonto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Drive Inter                              | change                            |                                                            |                                                                                                                          |
| District: <u>Seven</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                   |                                                            |                                                                                                                          |
| Requestor: Richard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Moss, PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                   | Phone: <u>813/97</u>                                       | <u>5-6000</u>                                                                                                            |
| District IRC: Waddal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h Farah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                   | Phone: <u>813/97</u>                                       | <u>75-6440</u>                                                                                                           |
| <u>Document Type</u> : □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ] MLOU □ IJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R ⊠IMR                                     | □ IOAR                            | □ OTHER                                                    |                                                                                                                          |
| Status of Documen complexity of the property o | roject, interim revi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ews may be                                 |                                   |                                                            | v; however, depending on the the MLOU)                                                                                   |
| Interchanges) and coreviews have been of all comments and Comments (ERC) sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | been prepared fomplies with the Flooring and all conducted and all conducted provides the provid | HWA two pol<br>comments an<br>ed during QC | icy requirement<br>Id issues have | ents. Appropriate<br>been resolved t<br>ailable in the pro | -030-160 (New or Modified e District level quality control o their satisfaction. A record ject file or Electronic Review |
| Requestor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Richard A. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oss. PE                                    |                                   | Date: ַ                                                    |                                                                                                                          |
| IRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DocuSigned by Waddau 9008365A20D944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Farali                                     |                                   | Date: <sub>_</sub>                                         | 01/25/2023   12:48 PM EST                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waddah Fara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an. El                                     |                                   |                                                            |                                                                                                                          |

### **Interchange Modification Report (IMR)**

### I-75 (SR 93A) at Gibsonton Drive

Hillsborough County, Florida

437650-2-22-01



### Florida Department of Transportation

Determination of Safety, Operational and Engineering Acceptability

Acceptance of this document indicates successful completion of the review and determination of safety, operational and engineering acceptability of the Interchange Access Request. Approval of the access request is contingent upon compliance with applicable Federal requirements, specifically the National Environmental Policy Act (NEPA) or Department's Project Development and Environment (PD&E) Procedures. Completion of the NEPA/PD&E process is considered approval of the project location design concept described in the environmental document.

| Requestor                           | A Mar                                                  | 01/25/2023   11:11 AM |
|-------------------------------------|--------------------------------------------------------|-----------------------|
| 110400001                           | Richard Moss, PE                                       | Date                  |
|                                     | Director of Transportation Development, District Seven |                       |
| Interchange Review<br>Coordinator   | Docusigned by:<br>Waddalu Farali                       | 01/25/2023   12:48 PM |
|                                     | Waddah Farah, El, MSE                                  | Date                  |
| Systems Management<br>Administrator | Distriction                                            | 01/31/2023   12:08 PM |
|                                     | Jenna Bowman, PE                                       | Date                  |
|                                     | Systems Implementation Office – Central Office         |                       |
| State Chief Engineer                | Dan Hurtado<br>C42B6FE133D643A                         | 01/31/2023   12:43 PM |
| Ŭ                                   | Dan Hurtado, P.E.  Central Office                      | Date                  |

DocuSigned by:

## Professional Engineer's Certification

I hereby certify that I am a registered professional engineer in the State of Florida practicing with H.W. Lochner, Inc., a Florida Corporation authorized as an engineering business under provisions of Chapter 471, Florida Statutes, by the State of Florida Department of Business and Professional Regulation, Board of Professional Engineers, and I have prepared or approved the evaluation, findings, opinions, conclusions or technical advice hereby reported for:

| WPI Segment No.: | 437650-2                                                            |
|------------------|---------------------------------------------------------------------|
| Project:         | I-75 (SR 93A) at Gibsonton Drive<br>Interchange Modification Report |
| County/State:    | Hillsborough, Florida                                               |

I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of transportation engineering as applied through professional judgement and experience.

Signature:

Name: James E. Spinks III, PE, PTOE

Professional Engineer Number: 66775

Engineering Firm: H.W. Lochner

4350 W. Cypress Street, Suite 800

Tampa, FL 33607

Date: 1-24-2023

# **Executive Summary**

The Florida Department of Transportation (FDOT) District Seven prepared an Interchange Modification Report (IMR) to identify safety, operational, and geometric improvements to mitigate the existing safety and operational deficiencies for the I-75 and Gibsonton Drive interchange, within Hillsborough County.

The objective of this IMR is to improve access from I-75 to Gibsonton Drive through interchange level improvements and improving ramp merge/diverge conditions. The area of influence (AOI) includes the I-75 merge/diverge areas at the Gibsonton Drive interchange and Gibsonton Drive from west of New East Bay Road to east of Fern Hill Drive. The existing operational and safety issues of greatest concern within the AOI are as follows:

- Significant AM congestion is present along Gibsonton Drive with vehicles attempting to access the northbound I-75 on-ramp from both the eastbound and westbound directions. Thereby, causing competition between both sides of Gibsonton Drive to use the on-ramp.
- In the PM peak hour, the drop lane condition at the southbound I-75 off-ramp to Gibsonton Drive is combined with significant southbound left turning demand at the ramp terminal, which leads to significant I-75 mainline queuing. Under typical conditions, congestion experienced due to the operation of the southbound off-ramp can begin to be observed nearly 3.0 miles upstream of the diverge, at the start of the auxiliary lane. This poses not only an operational concern, but also a significant safety problem during the PM peak as the speed differential between the auxiliary lane and general-purpose lanes can contribute to erratic driving behavior and resulting collisions.
- I-75 and Gibsonton Drive are prioritized hurricane evacuation routes, causing concern for the safety of motorists during an evacuation event; and
- The poor Level of Service (LOS) at the subject interchange during peak travel periods does not support the economic development and prosperity of the rapidly growing study area. This shortcoming will be further exacerbated with the onset of new developments planned in the area.

The following summarizes the results of the evaluation of existing and future traffic operations with and without proposed improvements.

### A. Existing Traffic Conditions

Traffic Software Integrated System – Corridor Simulation (CORSIM), version 6.3, was used to evaluate the existing year (2020) operational characteristics of the I-75 and Gibsonton Drive interchange study area. Peak hour results of the CORSIM calibration analyses are as follows:

- AM and PM Peak Level of Service (LOS) indicate that southbound I-75 (north of Gibsonton Drive) and the southbound off-ramp failed to meet target LOS D.
- The I-75 ramps are not capacity constrained, however there are operational deficiencies causing congestion and queueing.
- Gibsonton Drive fails to operate at target LOS D eastbound to the west of New East Bay Road (during the AM and PM Peak hours), eastbound between New East Bay Road and the southbound I-75 ramp terminal, eastbound between the ramp terminals (during the AM peak hour), and westbound from east of Fern Hill Drive to Fern Hill Drive (during the AM and PM peak hours). On average through the study area, both directions of Gibsonton Drive operate at LOS C or D based on the speed threshold.

■ There are several locations along Gibsonton Drive which have queues longer than the storage lengths. Through a visual audit of the CORSIM simulation, the unsignalized eastbound left turn at the northbound I-75 ramp terminal was identified as a primary contributor to congestion and queue spill backs in the study area.

Historical crash data, during the five-year period from 2016-2020, included a total of 557 crashes within the project study area. Of the 557 total crashes, there were three fatal crashes, 254 crashes involving personal injury, and 300 crashes that were property damage only. Crashes in the study area resulted in an estimated economic loss of approximately \$105.4 million. Multiple high crash roadway segments and intersections were identified within the AOI, segment and intersection crash rates were detailed as follows:

- The segment crash rates range from 0.255 crashes per million vehicle miles traveled (MVMT) (on the southbound I-75 roadway segment, north of the off-ramp to Gibsonton Drive) to a high of 4.462 crashes per MVMT (along the Gibsonton Drive roadway segment, between the I-75 northbound ramps and Fern Hill Drive).
- The intersection crash rates range from a low of 1.006 crashes per million entering vehicles (MEV) at the Gibsonton Drive and southbound I-75 ramp terminal to a high of 3.551 crashes per MEV at the Gibsonton Drive and Fern Hill Drive intersection.

### **B. Future Traffic Conditions**

To address the existing safety and operational concerns at the Gibsonton Interchange, several shortterm/low-cost safety and operational improvements (e.g., widening the southbound I-75 off ramp to two lanes, new signalization and construction of dual eastbound left turn lanes and dual westbound right turn lanes at the northbound I-75 ramp terminal intersection) were proposed by FDOT District 7. Through an in-depth evaluation of regional travel demand forecasts and thorough review of area development plans, it was concluded that the short-term improvements would not provide the necessary roadway capacity to meet future travel demands within the interchange area. To minimize throw away costs, the District made the decision to forego implementation of the proposed short-term improvements and secured funding for the reconstruction of the I-75 at Gibsonton Drive interchange to form a new Diverging Diamond Interchange (DDI). The DDI interchange was selected as the preferred interchange configuration during the I-75 PD&E Study's alternatives analysis process and was found to minimize costs, reduce environmental impacts, and provide the greatest level of safety and mobility among the interchange alternatives that were analyzed. The traffic control features and geometric layout of the DDI, and the manner by which the interchange ramps transition into the I-75 mainline, were further refined during the interchange access request process. Below summarizes the improvements considered for No-Build and Build Alternatives.

No-Build Alternative:

Opening Year (2025):

- No-Build Alternative maintains the current I-75 and Gibsonton Drive Diamond Interchange configuration, existing year (2020) lane configuration and traffic control at the study intersections within the AOI.
- Additional transportation improvement includes three exclusive left turn lanes, one through and one exclusive right turn lane at the south leg of the Gibsonton Drive and Fern Hill Drive/Old Gibsonton Drive intersection.

### Design Year (2045):

- No-Build Alternative is based on Opening Year No-Build Alternative.
- The construction of express lanes on I-75 from Moccasin Wallow Road to S of US 301.

### **Build Alternative:**

### Opening Year (2025):

- The Opening year (2025) Build Alternative includes of the current Diamond Interchange to a Diverging Diamond Interchange (DDI).
- Construction of a new 1,500-foot-long deceleration lane on I-75 northbound that becomes an exit lane to Gibsonton Drive, allowing the existing single lane exit to be converted to a twolane exit. The two-lane off-ramp widens to four lanes, providing dual left and right turn lanes onto Gibsonton Drive.
- Reconfiguring the Gibsonton Drive access to I-75 northbound by separating the eastbound traffic from the westbound traffic. Eastbound Gibsonton Drive traffic has dual left turn lanes onto the northbound I-75 on-ramp which merges in a single lane on-ramp and enters I-75 northbound as an add lane south of the Alafia River. Westbound Gibsonton Drive traffic has dual right turn lanes onto the northbound I-75 on-ramp carried by a new bridge over the Alafia River and merges with I-75 north of the Riverview Drive overpass.
- Providing additional capacity for the Gibsonton Drive westbound to I-75 northbound on-ramp by extending the existing lane and constructing an additional lane, prior to the Gibsonton Drive and Fern Hill Drive intersection, resulting in three westbound through lanes, one left turn lane to Fern Hill Drive, and two auxiliary lanes that become the dual right turn lanes onto I-75 northbound.
- Converting the existing I-75 southbound off-ramp from a single exit to a two-lane exit. The two-lane exit widens to six-lanes, providing three right turn lane and three left turn lanes.
- Reconfiguring the I-75 southbound on-ramp to merge exclusive turn lanes from eastbound and westbound Gibsonton Drive.
- Widening Gibsonton Drive from a four-lane divided arterial typical section to a six-lane divided arterial between New East Bay Road and east of Fern Hill Drive.
- Providing a third eastbound Gibsonton Drive thru lane at the New East Bay Road intersection.
- Installing new traffic signals at the two crossovers of the DDI.
- Modifying the traffic signal timings at New East Bay Road and Fern Hill Drive and coordinating with the new traffic signals at the DDI crossovers.
- Providing pedestrian accommodations including 6-foot-wide sidewalks and high emphasis crosswalks on both sides of Gibsonton Drive between New East Bay Road and Fern Hill Drive. A single 10-foot-wide sidewalk is provided in the median within the DDI limits while ensuring continuity through the corridor.
- Providing bicyclist accommodations including dedicated bicycle lanes along Gibsonton Drive eastbound and westbound between New East Bay Road and Fern Hill Drive. Bicycle bailouts have been proposed approaching the DDI crossovers to provide an option for the bike to utilize the 10-foot-wide sidewalk

Design Year (2045):

- Design Year (2045) Build Alternative is based on Opening Year Build Alternative.
- Optimizing the traffic signal timings at New East Bay Road and Fern Hill Drive and coordinating with the new traffic signals at the DDI crossovers for the design Year (2045) demand traffic. During the design year (2045), the opening year (2025)'s timing no longer works as the network reaches saturation and so the cycle length of 150 seconds (to equal the DDI signals) is more appropriate and services the design year (2045) vehicles more efficiently with less flow breakdown, particularly on the westbound approach to New East Bay Road.
- The construction of express lanes on I-75 from Moccasin Wallow Road to S of US 301.

To quantify the benefit of the Build Alternative or eliminate improvements from further considerations, a No-Build Alternative was also assessed and assumes that the current geometric configuration and traffic control operations of the I-75 and Gibsonton Drive interchange will remain unchanged. The anticipated opening year for proposed interchange improvements for the I-75 interchange at Gibsonton Drive is 2025.

### Opening Year (2025)

During the opening year (2025), when comparing the No-Build and Build Alternatives, there are improvements throughout the network with serviced vehicles increasing at nearly every movement as congestion is relieved. During both the AM and PM peak hours there are improvements to delay and LOS, particularly at the I-75 ramp terminals which are no longer experiencing a failing LOS. Some increase in delay at specific locations can be expected as upstream bottlenecks are alleviated and vehicle throughput is improved. No movements are expected to fail during the AM and PM peak hours under the Build Alternative. Volume-to-capacity ratios were checked for each ramp of the I-75 at Gibsonton Drive interchange in the AM and PM time periods for the No-Build and Build Alternatives in the opening year (2025). This check indicated that the on-ramp to northbound I-75 during the AM peak hour and the offramp to Gibsonton Drive from southbound I-75 during the PM peak hour exceed the capacity of the ramp under the No-Build Alternative. Under the Build Alternative, the ramps will operate under capacity during the opening year (2025).

### Design Year (2045)

During the design year (2045), when comparing the No-Build and Build Alternatives, there are improvements throughout the network with serviced vehicles increasing at nearly every movement as congestion is relieved. During both the AM and PM peak hours there are improvements to delay and LOS, particularly at the I-75 ramp terminals which are no longer experiencing a failing LOS. Some increase in delay at specific locations can be expected as upstream bottlenecks are alleviated and vehicle throughput is improved, such as the westbound left movement from Gibsonton Drive to southbound East Bay Road. No additional approaches or intersections fail during the AM or PM peak hour. Throughout the network, nearly any increase in delay from the No-Build Alternative, is accompanied by an increase in serviced volume and nearly any decrease in serviced volume is accompanied by a decrease in delay. These changes are due to either alleviating upstream or downstream bottlenecks, or by changes in signal timings to prioritize clearance of the DDI to avoid any impacts to the I-75 mainline. The only locations that have both an increase in delay and a decrease in serviced volume include the northbound left and northbound through movement at New East Bay Road which does already fail during the PM peak hour and the northbound through movement at Fern Hill Drive during the PM peak hour which only services three vehicles. Nearly, or all, of the vehicles at these locations are being serviced still, and improvements to these locations will adversely affect operations elsewhere in the network. Additionally, during the design year (2045), compared to the No-Build Alternative, queue lengths under the Build Alternative are improved and no queues exceed the available storage lengths. Volume-to-capacity ratios were checked for each ramp of the I-75 at Gibsonton Drive interchange in the AM and PM time periods for the No-Build and Build Alternatives in the design year (2045). This check indicated that compared to the opening year (2025) No-Build Alternative, congestion is expected to increase, particularly on the northbound on-ramp from Gibsonton Drive, and the southbound off-ramp to Gibsonton Drive which will both fail during both peak periods in the design year (2045). Under the Build Alternative, the ramps will continue to operate under capacity during the design year (2045).

### C. Comparison of Alternatives

The modifications to the existing access of the I-75 and Gibsonton Drive interchange under the Build Alternative are expected to enhance traffic safety. Impacts on traffic safety will result from recommended enhancements aimed to reduce the crash frequency of several intersections in the AOI.

A comparison of the overall intersection delays associated with the Existing, No-Build, and Build Alternatives in the AM and PM peak hours can be found in **Table E.1** and **Table E.2**, respectively.

**Existing** No-Build 2025 Build 2025 No-Build 2045 **Build 2045** Intersection LOS Delay Delay LOS Delay LOS Delay LOS Delay LOS 32.5 C 96.0 F 100.5 F 22.5 C New East Bay Road 12.6 В Southbound 58.8 86.4  $23.8^{2}$ C 99.3  $19.9^{2}$ В I-75 Ramp Terminal Northbound 38.7\* 58.8\* 18.0 В 32.8\*1 D 20.2 C I-75 Ramp Terminal Fern Hill Drive  $12.0^{3}$  $9.4^{3}$ 13.7 В 13.3 В 12.2 B

Table E.1: AM Intersection Analysis

Red highlight indicates that the delay does not meet the LOS target, D

- 2. 2045 Build condition delay results being reported are better than 2025 Build condition for the following reasons:
- More efficient eastbound-westbound thru-traffic movement along the corridor in 2045, due to optimized cycle length and
  off-set at adjacent intersections, as compared to 2025, and
- Slightly different turning movement percentages between 2025 and 2045
- 3. 2025 No-Build condition delay decreases from existing condition because of lane geometry improvements

Existing No-Build 2025 Build 2025 No-Build 2045 **Build 2045** Intersection LOS Delay Delay Delay LOS Delay LOS Delay LOS Е C 30.9 C 72.9 47.7 New East Bay Road 23.8 19.1 В D Southbound 37.9 D 39.5 D  $16.4^{1}$ В 102.0 F 12.1<sup>1</sup> В I-75 Ramp Terminal Northbound C 3.1\* Α 5.2\* 16.3 В 20.3\* 19.6 В I-75 Ramp Terminal Fern Hill Drive  $10.4^{2}$  $9.6^{2}$ 16.0 В 13.4 В 8.6 В Α

Table E.2: PM Intersection Analysis

Red highlight indicates that the delay does not meet the LOS target, D

<sup>\*</sup>Average intersection delay was used as overall delay for unsignalized intersections.

<sup>1.</sup> The overall average un-signalized intersection delay decreases because of unserviced EBL volumes in 2045. It is anticipated that this intersection will continue to deteriorate from 2025 No-Build condition, and operate at LOS F with greater delay.

<sup>\*</sup>Average intersection delay was used as overall delay for unsignalized intersections.

<sup>1. 2045</sup> Build condition delay results being reported are better than 2025 Build condition for the following reasons:

More efficient eastbound-westbound thru-traffic movment along the corridor in 2045 because of using different optimized cycle length and off-set at adjacent intersections from 2025 model, and

<sup>•</sup> Slightly different turning movement percentages between 2025 and 2045

<sup>2. 2025</sup> No-Build condition delay decreases from existing condition because of lane geometry improvements

**Table E.3** provides a comparison of maximum queue lengths compared to available storage lengths for the No-Build and Build Alternative in the design year (2045). In the table, the available storage represents the left or right turn storage bay measured from the stop bar to the taper. The available storage for the Off-ramp is measured from the stop bar to the gore point, with adjustment for deceleration length where applicable. Queue spillback is reduced, while vehicle throughput is increased through the AOI. No queues exceed the available storage lengths under the Build Alternative in the design year (2045).

Table E.3: Design Year (2045) Queue Analysis

|                                 |          | No-                            | Build Altern | uild Alternative Build Alternative |                                |          |                          |  |
|---------------------------------|----------|--------------------------------|--------------|------------------------------------|--------------------------------|----------|--------------------------|--|
| Gibsonton Drive<br>Intersection | Movement | Available<br>Storage<br>(Feet) | Queue Le     | m Vehicle<br>ength (Feet)          | Available<br>Storage<br>(Feet) | Queue Le | n Vehicle<br>ngth (Feet) |  |
|                                 | 501      |                                | AM Peak      | PM Peak                            |                                | AM Peak  | PM Peak                  |  |
|                                 | EBL      | 190                            | 50           | 50                                 | 190                            | 75       | 100                      |  |
|                                 | EBT      | 1,100                          | 1,325        | 1,375                              | 1,100                          | 475      | 925                      |  |
|                                 | EBR      | 250                            | 100          | 225                                | 250                            | 50       | 250                      |  |
|                                 | WBL      | 530                            | 300          | 725                                | 1,300                          | 375      | 800                      |  |
| New East Bay Road               | WBT      | 730                            | 600          | 375                                | 1,780                          | 375      | 275                      |  |
|                                 | WBR      | 730                            | 100          | 50                                 | 1,780                          | 75       | 50                       |  |
|                                 | NBTL     | 410                            | 550          | 500                                | 410                            | 250      | 300                      |  |
|                                 | NBR      | 390                            | 575          | 500                                | 390                            | 325      | 200                      |  |
|                                 | SBLTR    | 430                            | 325          | 375                                | 430                            | 200      | 350                      |  |
|                                 | EBT      | 730                            | 1,625        | 1,600                              | 1,780                          | 525      | 350                      |  |
|                                 | EBR      | 520                            | 75           | 75                                 | 530                            | 25       | 25                       |  |
| Southbound I-75 Ramp            | WBL      | 640                            | 850          | 850                                | 900                            | 150      | 150                      |  |
| Terminal                        | WBT      | 1,950                          | 2,325        | 2,400                              | 900                            | 700      | 725                      |  |
|                                 | SBL      | 1370                           | 1,650        | 1,650                              | 1,550                          | 550      | 550                      |  |
|                                 | SBR      | 1420                           | 525          | 525                                | 1,530                          | 600      | 600                      |  |
|                                 | EBL      | 640                            | 875          | 875                                | 900                            | 475      | 75                       |  |
|                                 | EBT      | 1,950                          | 2,325        | 2,250                              | 900                            | 900      | 550                      |  |
| Northbound I-75 Ramp            | WBT      | 730                            | 550          | 1,225                              | 1,810                          | 475      | 625                      |  |
| Terminal                        | WBR      | 730                            | 575          | 850                                | 1,810                          | 0        | 50                       |  |
|                                 | NBL      | 375                            | 275          | 325                                | 1,700                          | 150      | 125                      |  |
|                                 | NBR      | 2,500                          | 25           | 25                                 | 1,680                          | 275      | 250                      |  |
|                                 | EBL      | 250                            | 225          | 250                                | 420                            | 175      | 150                      |  |
|                                 | EBT      | 730                            | 600          | 650                                | 1,810                          | 225      | 950                      |  |
|                                 | EBR      | 215                            | 150          | 150                                | 420                            | 75       | 75                       |  |
|                                 | WBL      | 330                            | 200          | 175                                | 350                            | 175      | 150                      |  |
|                                 | WBTR     | 1,170                          | 1,375        | 1,475                              | 580                            | 500      | 400                      |  |
| Fern Hill Drive                 | NBL      | 580                            | 125          | 75                                 | 200                            | 125      | 75                       |  |
|                                 | NBT      | 580                            | 25           | 50                                 | 580                            | 25       | 25                       |  |
|                                 | NBR      | 580                            | 150          | 175                                | 240                            | 150      | 150                      |  |
|                                 | SBTL     | 410                            | 200          | 300                                | 410                            | 100      | 200                      |  |
|                                 | SBR      | 200                            | 50           | 50                                 | 200                            | 75       | 75                       |  |
|                                 | 3511     | 200                            |              |                                    | 200                            |          |                          |  |

Note: Red highlight indicates that maximum vehicle queue length exceeds available storage length

Based on the analyses documented in this IMR, the Build Alternative is expected to improve the operation and overall safety of the study intersections. The results of the CORSIM microsimulation analysis, as presented in **Table E.4**, provide evidence of substantial benefits associated with implementing the Build Alternative. Operational benefits under the Build Alternative were demonstrated by an increase in vehicle miles traveled and average speeds for the opening year (2025) and design year (2045) were documented as follows:

- During the opening year (2025) the average speed increases by 80.5 percent during the AM peak period and by 23.5 percent during the PM peak period. The vehicle miles traveled (under static demand volumes) increases by 21.9 percent during the AM peak period and 3.9 percent during the PM peak period. Latent demand will decrease by 91.4 percent during the AM peak period and by 95.3 percent during the PM peak period.
- During the design year (2045), the average speed increases by 37.1 percent during the AM peak period and by 44.8 percent during the PM peak period. The benefits of vehicles serviced is significant with an increase in vehicle miles traveled (under static demand volumes) of 31.3 percent during the AM peak period and 23.8 percent during the PM peak period. Latent demand will decrease by 80.0 percent during the AM peak period and by 91.5 percent during the PM peak period.

Table E.4: Comparison of Network-Wide CORSIM MOEs for Opening Year (2025) and Design Year (2045) during AM and PM Peak Hour Periods

| Network-Wide                  | Analysis       | Opening Year (2025)     |                      |                 | Design Year (2045)      |                      |                 |  |
|-------------------------------|----------------|-------------------------|----------------------|-----------------|-------------------------|----------------------|-----------------|--|
| MOE<br>MOE                    | Time<br>Period | No-Build<br>Alternative | Build<br>Alternative | %<br>Difference | No-Build<br>Alternative | Build<br>Alternative | %<br>Difference |  |
| Vehicle Miles                 | AM             | 338,022                 | 412,070              | 21.9%           | 411,013                 | 539,661              | 31.3%           |  |
| Traveled<br>(veh-miles)       | PM             | 399,953                 | 415,387              | 3.9%            | 429,142                 | 531,071              | 23.8%           |  |
| Travel Time Total             | AM             | 9,643                   | 6,500                | -32.6%          | 9,774                   | 9,340                | -4.4%           |  |
| (hours)                       | PM             | 9,665                   | 8,130                | -15.9%          | 12,961                  | 11,085               | -14.5%          |  |
| Speed Average                 | AM             | 35.1                    | 63.4                 | 80.5%           | 42.1                    | 57.8                 | 37.1%           |  |
| (mph)                         | PM             | 41.4                    | 51.1                 | 23.5%           | 33.1                    | 47.9                 | 44.8%           |  |
| Total Travel Delay<br>(hours) | AM             | 4,802                   | 576                  | -88.0%          | 3,719                   | 1,420                | -61.8%          |  |
|                               | PM             | 3,916                   | 2,162                | -44.8%          | 6,683                   | 3,286                | -50.8%          |  |
| Latent Demand                 | AM             | 12,090                  | 1,036                | -91.4%          | 16,889                  | 3,385                | -80.0%          |  |
| (veh)                         | PM             | 10,990                  | 518                  | -95.3%          | 19,942                  | 1,692                | -91.5%          |  |

<sup>\*</sup>Latent demand at some of entry nodes exceeds maximum value reported by CORSIM of 9,999. 9,999 is assumed for these nodes, however the latent demand exceeds this value.

The quantitative safety analysis provided additional safety benefits to the operational benefits for implementing the Build Alternative. Using procedures from the Highway Safety Manual (HSM), all collisions associated with the ramp terminals and ramps are expected to be reduced by up to 14.2 percent and provide a 3.2 crash reduction per year.

Improvements to this interchange have local government support and are included in the Hillsborough County Metropolitan Planning Organization (MPO) 2045 Long Range Transportation Plan (LRTP), as it indicates the I-75 at Gibsonton Drive interchange as being a top regional priority for future funding.

The proposed improvements under Build Alternative will not require the acquisition of any ROW. Therefore, it is anticipated there will be minimal to no natural, cultural, or socio-economic impacts associated with implementing the proposed improvements.

There are no anticipated design exceptions or variations to FDOT or FHWA policies, rules, or standards anticipated for this project, but if any exception/variation should arise it will be processed per FHWA and FDOT standards.

The access management within the AOI of the I-75 and Gibsonton Drive interchange will not be changed by the proposed improvements to be implemented as part of the Build Alternative.

Based upon this analysis, the proposed modifications under Build Alternative provide significant improvements to corridor operation, mitigate congestion, and enhance safety within the study AOI.

### D. FHWA Policy Points

This IMR follows the FHWA's Policy on Access to the Interstate System requirements for the justification and documentation needed to substantiate any proposed changes in access to the Interstate System. The Interstate System provides a key role in facilitating the distribution of goods and services sustaining the economic health, mobility and safety of a region and state. As part of the United States transportation system that provides access to local highways using a network of limited access freeways, it is important to invest in the preservation and enhancement of the Interstate System to meet the needs of the 21st century. All new or modified points of access must be approved by FHWA and developed in accordance with federal laws and regulations (as specified in 23 U.S.C. 109 and 111, 23 C.F.R. 625.4, and 49 C.F.R. 1.48(b)(1)). The following sections document the adherence of the proposed improvements to the two FHWA Policy Criteria (effective as of May 22, 2017).

### **Policy Point 1**

An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

### Satisfaction of Policy Point 1

An operational and safety analysis was conducted to evaluate the Build and No-Build Alternatives. The Build Alternative consists primarily of reconstructing the current Diamond Interchange to a Diverging Diamond Interchange along with improvements at New East Bay Road and Fern Hill Drive while the No-Build Alternative maintains the current I-75 and Gibsonton Drive Diamond Interchange configuration,

existing year (2020) lane configuration and traffic control, with the committed improvements at south leg of Fern Hill at the study intersections within the AOI.

The CORSIM microsimulation results of the I-75 basic freeway segments and ramp merge/diverge areas for the Build Alternative indicate that during the design year (2045), serviced vehicles on southbound I-75 increase during both the AM and PM peak hours compared to the No-Build Alternative. No new segments of southbound I-75 fail due to the improvements made on Gibsonton Drive. Additionally, the segment of southbound I-75 north of Gibsonton Drive and the diverge segment at the southbound I-75 off-ramp to Gibsonton Drive show increases in speed and decreases in density under the Build Alternative.

Volume-to-capacity ratios were checked for each ramp of the I-75 at Gibsonton Drive interchange in the AM and PM time periods for the No-Build and Build Alternatives in the design year (2045). This check indicated that compared to the opening year (2025) No-Build Alternative, congestion is expected to increase, particularly on the northbound on-ramp from Gibsonton Drive, and the southbound off-ramp to Gibsonton Drive which will both fail during both peak periods in the design year (2045). Under the Build Alternative, the ramps will continue to operate under capacity during the design year (2045).

The CORSIM microsimulation results of the I-75 ramp terminals and cross-streets at Gibsonton Drive for the design year (2045) indicate that during the design year (2045), when comparing the No-Build and Build Alternatives, there are improvements throughout the network with serviced vehicles increasing at nearly every movement as congestion is relieved. In the Build Alternative, during the AM and PM peak hours, all four study intersections have an LOS of D or better. The reduction of maximum queue spillbacks under the Build Alternative is also largely mitigated with no queues exceeding the available storage lengths in the design year (2045).

During the design year (2045), the average speed increases by 37.1 percent during the AM peak period and by 44.8 percent during the PM peak period. The benefits of vehicles serviced is significant with an increase in vehicle miles traveled (under static demand volumes) of 31.3 percent during the AM peak period and 23.8 percent during the PM peak period. Latent demand will decrease by 80.0 percent during the AM peak period and by 91.5 percent during the PM peak period.

When examining FDOT crash modification factors between the No-Build and Build Alternatives, the proposed improvements are expected to improve safety along the corridor. With the proposed improvements under the Build Alternative, all collisions associated with the ramp terminals and ramps are expected to be reduced by up to 14.2 percent and provide a 3.2 crash reduction per year.

Based upon this analysis, the Build Alternative provides significant improvements to the network configuration that improve corridor operation, mitigate congestion, and enhance safety within the study AOI.

### **Policy Point 2**

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

### Satisfaction of Policy Point 2

The proposed Build Alternative will maintain full access to all traffic movements on Gibsonton Drive to and from I-75. The design will meet current standards for the projects on the interstate system and comply with the American Association of State Highway and Transportation Officials (AASHTO) and FDOT design standards. There are no design exceptions or variations to FDOT or FHWA policies, rules, or standards anticipated with the Build Alternative.

### **Table of Contents**

| 1.0 Introduction                                                               | 1  |
|--------------------------------------------------------------------------------|----|
| 1.1 Project Overview                                                           | 1  |
| 1.2 Purpose and Need                                                           | 1  |
| 1.3 Project Location                                                           | 2  |
| 1.4 Area of Influence                                                          | 3  |
| 1.5 Methodology                                                                | 4  |
| 1.6 Project Schedule                                                           | 4  |
| 2.0 Existing Conditions                                                        | 5  |
| 2.1 Roadway Geometry                                                           | 5  |
| 2.2 Land-Use                                                                   | 7  |
| 2.3 Safety                                                                     | 7  |
| 2.3.1 Crash Data                                                               | 7  |
| 2.3.2 Crash Analysis                                                           | 8  |
| 2.3.3 Segment Crash Rate                                                       | 11 |
| 2.3.4 Intersection Crash Rate                                                  | 12 |
| 2.3.5 Economic Loss                                                            | 13 |
| 2.4 Traffic                                                                    | 13 |
| 2.4.1 Traffic Data Collection                                                  | 13 |
| 2.4.2 Design Traffic Factors                                                   | 15 |
| 2.4.3 Existing Year (2020) Volume Development                                  | 16 |
| 2.5 Traffic Operational Analysis                                               | 19 |
| 2.5.1 Calibration Methodology                                                  | 19 |
| 2.5.2 Calibration Parameters and Results                                       | 20 |
| 2.5.3 Existing Year (2020) Measures of Effectiveness (MOEs)                    | 23 |
| 2.5.4 Existing Year (2020) I-75 Mainline Segments and Ramp Merge/Diverge Areas | 23 |
| 2.5.5 Existing Year (2020) I-75 Ramp Capacity                                  | 26 |
| 2.5.6 Existing Year (2020) Gibsonton Drive Intersections                       | 26 |
| 2.5.7 Existing Year (2020) Gibsonton Drive Roadway Segments                    | 32 |
| 3.0 Future Travel Demand                                                       | 33 |
| 3.1 Future Land-Use                                                            | 33 |
| 3.2 Trend Analysis                                                             | 34 |

| 3.2.1 BEBR Growth Trends                               | 34  |
|--------------------------------------------------------|-----|
| 3.2.2 Historical Count Trends                          | 34  |
| 3.3 Future Volume Development                          | 35  |
| 4.0 Alternatives Considered                            | 45  |
| 4.1 No-Build Alternative                               | 45  |
| 4.2 Build Alternative                                  | 47  |
| 5.0 Future Traffic Operational Analysis                | 50  |
| 5.1 Opening Year (2025) Traffic Operational Analysis   | 50  |
| 5.1.1 No-Build Alternative                             | 50  |
| 5.1.2 Build Alternative                                | 58  |
| 5.2 Design Year (2045) Traffic Operational Analysis    | 67  |
| 5.2.1 No-Build Alternative                             | 68  |
| 5.2.2 Build Alternative                                | 78  |
| 5.3 Alternatives Comparison of Network MOEs            | 90  |
| 6.0 Future Safety Analysis                             | 91  |
| 6.1 Quantitative Safety Analysis                       | 91  |
| 7.0 Coordination/Consistency with Other Plans/Projects | 93  |
| 8.0 Environmental Considerations                       | 94  |
| 9.0 Anticipated Design Variations                      | 95  |
| 10.0 Conceptual Signing Plan                           | 96  |
| 11.0 Access Management                                 | 97  |
| 12.0 FHWA Policy Points                                | 98  |
| Policy Point 1                                         | 98  |
| Satisfaction of Policy Point 1                         | 98  |
| Policy Point 2                                         | 99  |
| Satisfaction of Policy Point 2                         | 99  |
| 13.0 Summary and Conclusion                            | 100 |

## List of Figures

| Figure 1.1: Project Location Map                                              | 2  |
|-------------------------------------------------------------------------------|----|
| Figure 1.2: Area of Influence                                                 | 3  |
| Figure 2.1: Existing Intersection Geometries and Traffic Control              | 6  |
| Figure 2.2: Existing I-75 Lane Geometry                                       | 6  |
| Figure 2.3: Existing Land Use Map                                             | 7  |
| Figure 2.4: Crash Heat Map (2016 to 2020)                                     | 9  |
| Figure 2.5: Crash Severity by Crash Location                                  | 10 |
| Figure 2.6: Traffic Count Locations                                           | 15 |
| Figure 2.7: Existing Year (2020) AADTs                                        | 17 |
| Figure 2.8: Existing Year (2020) DDHVs                                        | 18 |
| Figure 2.9: Existing Year (2020) CORSIM Freeway MOEs                          | 25 |
| Figure 3.1: Future Land Use Map                                               | 33 |
| Figure 3.2: Opening Year (2025) No-Build AADTs                                | 37 |
| Figure 3.3: Opening Year (2025) Build AADTs                                   | 38 |
| Figure 3.4: Opening Year (2025) No-Build DDHVs                                | 39 |
| Figure 3.5: Opening Year (2025) Build DDHVs                                   | 40 |
| Figure 3.6: Design Year (2045) No-Build AADTs                                 | 41 |
| Figure 3.7: Design Year (2045) Build AADTs                                    | 42 |
| Figure 3.8: Design Year (2045) No-Build DDHVs                                 | 43 |
| Figure 3.9: Design Year (2045) Build DDHVs                                    | 44 |
| Figure 4.1: No-Build Alternative Intersection Geometries and Traffic Control  | 46 |
| Figure 4.2: No-Build 2045 Alternative I-75 Lane Geometry                      | 46 |
| Figure 4.3: Build Alternative Intersection Geometries and Traffic Control     | 49 |
| Figure 4.4: Build 2045 Alternative I-75 Lane Geometry                         | 49 |
| Figure 5.1 Opening Year (2025) No-Build Alternative CORSIM Freeway MOEs       | 52 |
| Figure 5.2: Opening Year (2025) Build Alternative CORSIM Freeway MOEs         | 60 |
| Figure 5.3: Design Year (2045) No-Build Alternative CORSIM Freeway MOEs       | 70 |
| Figure 5.4: Design Year (2045) No-Build Alternative CORSIM Managed Lanes MOEs | 71 |
| Figure 5.5: Design Year (2045) Build Alternative CORSIM Freeway MOEs          | 81 |
| Figure 5.6: Design Year (2045) Build Alternative CORSIM Managed Lanes MOEs    | 82 |

## List of Tables

| Table 2.1: Roadway Characteristics                                                                                             | 5  |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.2: Crash Data Summary                                                                                                  | 8  |
| Table 2.3: Segment Crash Rates                                                                                                 | 12 |
| Table 2.4: Intersection Crash Rates                                                                                            | 13 |
| Table 2.5: Estimated Crash Economic Loss                                                                                       | 13 |
| Table 2.6: Design Traffic Factors                                                                                              | 16 |
| Table 2.7: Existing Year (2020) AADT Calculation                                                                               | 16 |
| Table 2.8: I-75 Temporal Distribution                                                                                          | 19 |
| Table 2.9: CORSIM Calibration Results (field collected counts vs. simulated traffic volume)                                    | 21 |
| Table 2.10: CORSIM Calibration Results (field collected speed vs. simulated speed)                                             | 22 |
| Table 2.11: Existing Year (2020) I-75 Freeway Segment and Ramp Merge/Diverge Area Speed,  Density, and LOS                     | 24 |
| Table 2.12: Existing Year (2020) I-75 Ramp Capacity Check                                                                      | 26 |
| Table 2.13: Existing Year (2020) Intersection Vehicle Delay and LOS – AM Peak Hour                                             | 27 |
| Table 2.14: Existing Year (2020) Intersection Vehicle Delay and LOS – PM Peak Hour                                             | 28 |
| Table 2.15: Existing Year (2020) Intersection Vehicle Queue Lengths                                                            | 31 |
| Table 2.16: Existing Year (2020) Gibsonton Drive Arterial Speed and LOS                                                        | 32 |
| Table 3.1: Hillsborough County BEBR Population Forecasts 2020 to 2045                                                          | 34 |
| Table 3.2: Historical FTO Growth Trends                                                                                        | 34 |
| Table 3.3: Future Year AADT Forecast                                                                                           | 36 |
| Table 5.1 Opening Year (2025) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicles and LOS – No-Build Alternative |    |
| Table 5.2: Opening Year (2025) I-75 Ramps Capacity Check - No-Build Alternative                                                | 53 |
| Table 5.3: Opening Year (2025) Intersection Vehicle Delay and LOS - No-Build Alternative – AM Pe                               |    |
| Table 5.4: Opening Year (2025) Intersection Vehicle Delay and LOS - No-Build Alternative – PM Pe                               |    |
| Table 5.5: Opening Year (2025) Intersection Vehicle Queue Lengths - No-Build Alternative                                       | 57 |
| Table 5.6: Opening Year (2025) Gibsonton Drive Arterial Speed and LOS - No-Build Alternative                                   | 58 |
| Table 5.7 Opening Year (2025) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicles and LOS – Build Alternative    |    |
| Table 5.8: Opening Year (2025) I-75 Ramps Capacity Check – Build Alternative                                                   | 61 |

| Hour                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Table 5.10: Opening Year (2025) Intersection Vehicle Delay and LOS – Build Alternative – PM Peak<br>Hour64                              |
| Table 5.11: Opening Year (2025) Intersection Vehicle Queue Lengths – Build Alternative66                                                |
| Table 5.12: Opening Year (2025) Gibsonton Drive Arterial Speed and LOS – Build Alternative67                                            |
| Table 5.13 Design Year (2045) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicle Density and LOS – No-Build Alternative69 |
| Table 5.14: Design Year (2045) I-75 Ramps Capacity Check - No-Build Alternative72                                                       |
| Table 5.15: Design Year (2045) Intersection Vehicle Delay and LOS - No-Build Alternative – AM Peak<br>Hour73                            |
| Table 5.16: Design Year (2045) Intersection Vehicle Delay and LOS - No-Build Alternative – PM Peak<br>Hour75                            |
| Table 5.17: Design Year (2045) Intersection Vehicle Queue Lengths - No-Build Alternative77                                              |
| Table 5.18: Design Year (2045) Gibsonton Drive Arterial Speed and LOS - No-Build Alternative78                                          |
| Table 5.19 Design Year (2045) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicle Density and LOS – Build Alternative79    |
| Table 5.20: Design Year (2045) I-75 Ramps Capacity Check – Build Alternative83                                                          |
| Table 5.21: Design Year (2045) Intersection Vehicle Delay and LOS – Build Alternative – AM Peak Hou                                     |
| Table 5.22: Design Year (2045) Intersection Vehicle Delay and LOS – Build Alternative – PM Peak Hou                                     |
| Table 5.23: Design Year (2045) Intersection Vehicle Queue Lengths – Build Alternative88                                                 |
| Table 5.24: Design Year (2045) Gibsonton Drive Arterial Speed and LOS – Build Alternative89                                             |
| Table 5.25: Comparison of Network-Wide CORSIM MOEs for Opening Year (2025) and Design Year (2045) during AM and PM Peak Hour Periods90  |
| Table 6.1: Crash Reduction Factor Application9                                                                                          |
|                                                                                                                                         |

### **Appendices**

Appendix A: Methodology Letter of Understanding

Appendix B: Straight Line Diagrams

Appendix C: Crash Data

Appendix D: Traffic Data

Appendix E: Volume Development Memorandum

Appendix F: 2017 Volume Calibration

Appendix G: Existing Year (2020) Operational Analysis

Appendix H: Comparison of Alternatives

Appendix I: 2025 No-Build Operational Analysis

Appendix J: 2025 Build Operational Analysis

Appendix K: 2045 No-Build Operational Analysis

Appendix L: 2045 Build Operational Analysis

Appendix M: CMF Details

Appendix N: Conceptual Signing Plans

## Glossary of Terms

| Term   | Definition                                                         |
|--------|--------------------------------------------------------------------|
| AADT   | Annual Average Daily Traffic                                       |
| AASHTO | American Association of State Highway and Transportation Officials |
| AOI    | Area of Influence                                                  |
| CAR    | Crash Analysis Reporting                                           |
| CFR    | Code of Federal Regulations                                        |
| CIP    | Capital Improvement Program                                        |
| CMF    | Crash Modification Factor                                          |
| CORSIM | Corridor Simulation                                                |
| DDHV   | Directional Design Hour Volume                                     |
| DDI    | Directional Diamond Interchange                                    |
| DHT    | Design Hour Truck                                                  |
| FDM    | FDOT Design Manual                                                 |
| FDOT   | Florida Department of Transportation                               |
| FHWA   | Federal Highway Administration                                     |
| FPID   | Financial Project Identification                                   |
| FTO    | Florida Traffic Online                                             |
| GEH    | Geoffrey E Havers                                                  |
| GIS    | Geographic Information System                                      |
| GLOS   | Generalized Level of Service                                       |
| HCM    | Highway Capacity Manual                                            |
| HCS    | Highway Capacity Software                                          |
| HSM    | Highway Safety Manual                                              |
| HSMV   | Highway Safety and Motor Vehicles                                  |
| IARUG  | Interchange Access Request User's Guide                            |
| IMR    | Interchange Modification Report                                    |
| LOS    | Level of Service                                                   |
|        |                                                                    |

LRTP Long Range Transportation Plan

MOCF Model Output Conversion Factor

MPH Miles per Hour

MPO Metropolitan Planning Organization

MUTCD Manual on Uniform Traffic Control Devices

NCHRP National Cooperative Highway Research Program

PD&E Project Development and Environment

RCI Roadway Characteristics Inventory

RITIS Regional Integrated Transportation Information System

SIO Systems Implementation Office

SIS Strategic Intermodal System

SLD Straight Line Diagram

TBNEXT Tampa Bay Next

TBRPM Tampa Bay Regional Planning Model

TSM&O Transportation Systems Management and Operations

TMC Turning Movement Count

WPI Work Program Item

## 1.0 Introduction

### 1.1 Project Overview

The Florida Department of Transportation (FDOT) District Seven conducted an Interchange Modification Report (IMR) to identify improvements that can mitigate existing operational deficiencies and safety concerns at the I-75 at Gibsonton Drive interchange. I-75 is a major north-south interstate highway that is part of the Strategic Intermodal System (SIS) from its southern terminus in South Florida (SR 826/Palmetto Expressway) to the Georgia State line in the north.

Hillsborough County has been experiencing significant population growth in recent years with growth rates that consistently outpace the statewide average. Much of this growth has been centered in southern Hillsborough County as communities in Riverview and Lithia continue to thrive and expand. Due to this growth, it is imperative to provide regional access to these communities for sustained economic viability, mobility, and emergency evacuation. As the area surrounding the Gibsonton Drive interchange has continued to grow and evolve, the interchange itself has not kept pace with these changes and currently fails to operate at current Level of Service (LOS) targets.

The Gibsonton Drive and Fern Hill Drive intersection, located immediately east of the interchange, was recently signalized in 2018. The signalization of the intersection was implemented to better accommodate truck traffic from Ring Power/Caterpillar, located on Fern Hill Drive, south of Gibsonton Drive. In keeping with the need to serve not only vehicular, but freight and goods traffic in a safe and effective manner, the impacts of truck traffic played a key role in the operations of the I-75 and Gibsonton Drive interchange and were accommodated as such in the development of the proposed alternatives.

### 1.2 Purpose and Need

The primary purpose of this IMR is to identify safety, operational, and engineering improvements needed for the I-75 and Gibsonton Drive interchange, that would not only provide for immediate relief to existing traffic congestion and highway safety deficiencies, but also allow for added highway capacity to support future growth and economic development. This IMR is developed following FDOT Procedure Topic No. 525-030-160 (New or Modified Interchanges) in accordance with the Florida Department of Transportation's (FDOT's) *Interchange Access Request User's Guide* (IARUG) prepared by the Systems Implementation Office (SIO). The need for this project is based on the following list of identified deficiencies:

- Significant AM congestion is present along Gibsonton Drive with vehicles attempting to access the northbound I-75 on-ramp from both the eastbound and westbound directions. Thereby, causing competition between both sides of Gibsonton Drive to use the on-ramp.
- In the PM, the drop lane condition at the southbound I-75 off-ramp to Gibsonton Drive is combined with significant southbound left turning demand at the ramp terminal, which leads to significant I-75 mainline queuing. Under typical conditions, congestion experienced due to the operation of the southbound off-ramp begins nearly 3.0 miles upstream of the diverge, at the start of the auxiliary lane. This poses not only an operational concern, but a significant safety problem during the PM peak as speed differential between the auxiliary lane and general-purpose lanes can contribute to erratic driving behavior and resulting collisions.

- I-75 and Gibsonton Drive are prioritized hurricane evacuation routes, causing concern for the safety of motorists during an evacuation event.
- The poor LOS at the subject interchange during peak travel periods does not support the economic development and prosperity of the rapidly growing study area. These shortcomings will be further exacerbated with the onset of new developments planned in the area.

### 1.3 Project Location

The I-75 at Gibsonton Drive interchange is in southern Hillsborough County, 4.2 miles north of CR 672 (Big Bend Road) and 3.6 miles south of US 301. The I-75 and Gibsonton Drive interchange serves as a major access point from I-75 to the unincorporated communities of Gibsonton, Riverview, Lithia, Boyette, Bloomingdale, and Fish Hawk in the greater Tampa Bay Region. The western quadrants of the interchange provide access to residential properties, a Walmart Supercenter, and serve as an access to several existing and planned developments. The northeast quadrant is occupied by RaceTrac, Florida Super Wash, and residential properties of The Preserve. The southeast quadrant of the interchange is predominantly occupied by Ring Power, Caterpillar and Lennar Development.

Gibsonton Drive also connects I-75 with US 41 (2.2 miles to the west) and US 301 (1.3 miles to the east) and is depicted in **Figure 1.1**.

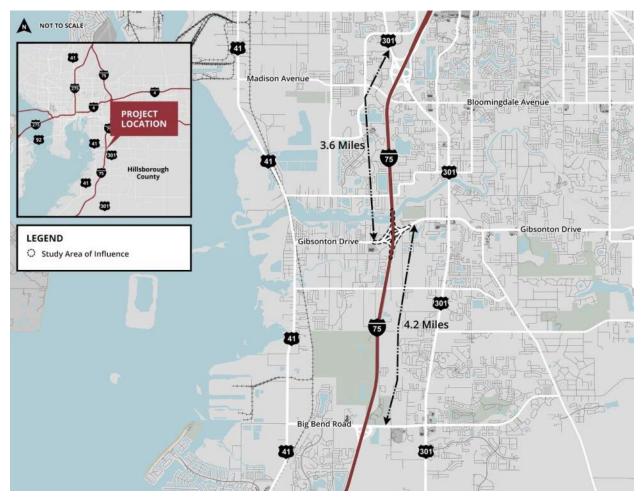



Figure 1.1: Project Location Map

### 1.4 Area of Influence

To effectively assess the safety and operational improvements that will be proposed for the I-75 at Gibsonton Drive interchange, this area of influence (AOI) includes the I-75 merge/diverge areas at the Gibsonton Drive interchange and Gibsonton Drive from west of New East Bay Road to east of Fern Hill Drive. Existing conditions at the adjacent interchanges will remain unaffected by improvements at the I-75 at Gibsonton Drive Interchange because the gore-to-gore distance is greater than three miles both north and south. The AOI is shown in **Figure 1.2** and is bordered by the following four intersections with Gibsonton Drive:

- 1 New East Bay Road
- 2 I-75 Southbound Ramps
- **3** I-75 Northbound Ramps
- 4 Fern Hill Drive

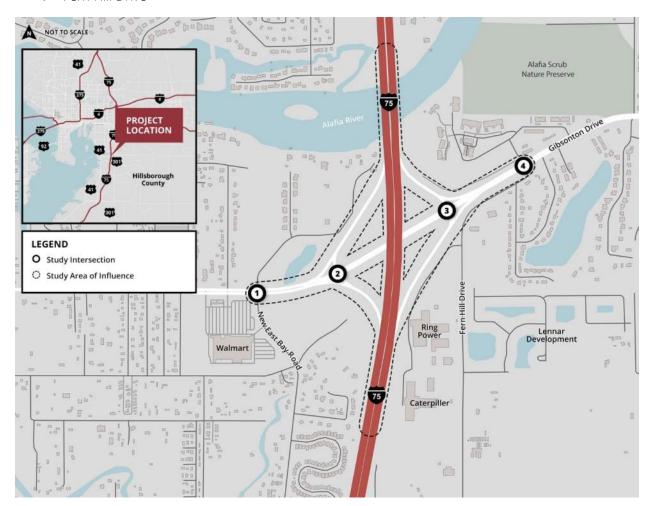



Figure 1.2: Area of Influence

The following interstate segments will also be analyzed:

- 1 Northbound I-75 south of Gibsonton Drive Off-Ramp
- 2 Northbound I-75 between Gibsonton Drive Off-Ramp and Gibsonton Drive On-Ramp
- 3 Northbound I-75 north of Gibsonton Drive On-Ramp
- 4 Southbound I-75 north of Gibsonton Drive Off-Ramp

- 5 Southbound I-75 between Gibsonton Drive Off-Ramp and Gibsonton Drive On-Ramp
- 6 Southbound I-75 south of Gibsonton Drive On-Ramp.

The following ramps will also be analyzed:

- 1 Southbound I-75 Off-Ramp (Diverge)
- 2 Southbound I-75 On-Ramp (Merge)
- 3 Northbound I-75 Off-Ramp (Diverge)
- 4 Northbound I-75 On-Ramp (Merge).

### 1.5 Methodology

This IMR was conducted utilizing methodologies and principles established in the 2021 Interchange Access Request User Guide (IARUG). The FDOT approved methodology for this report can be found in **Appendix A.** 

### 1.6 Project Schedule

The I-75 and Gibsonton Drive interchange is currently programmed to begin Design in Fiscal Year 2025. Design is estimated to take approximately 24 months. Construction is not funded in the adopted 5-year work program.

There are no other existing IARs, either approved or pending approval, currently located within the area of influence. However, several planned and programmed projects exist within the AOI that could influence the traffic characteristics within the study area. These projects are in various stages of either the FDOT Work Program or Hillsborough County Capital Improvement Program (CIP), and are identified as follows:

- The ongoing I-75 Project Development and Environment (PD&E) Study from north of Moccasin Wallow Road in Manatee County to south of US 301 (WPI Segment No.: 419235-2) in Hillsborough County evaluates the need for tolled express lanes on I-75. The I-75 PD&E Study will incorporate the I-75 at Gibsonton Drive IMR's Build Alternative as a No-Build condition when evaluating design year (2045) traffic conditions. This study will recommend no additional modifications at the I-75 at Gibsonton Drive interchange.
- Hillsborough County recently completed the planning phase and is moving into the design phase for improvements to the Gibsonton Drive and Fern Hill Drive intersection adjacent to the northbound I-75 ramp terminal (CIP: 69600311). The project includes enhanced pedestrian operations and increases turning lanes along Fern Hill Drive to better service demand. Planning on the project is complete and the project has moved into design, with an anticipated construction completion by late 2022.

Hillsborough County has also identified, in their 2045 Long Range Transportation Plan (LRTP), the widening of Gibsonton Drive between the I-75 interchange and US 301 from the existing 4-lane roadway typical section to a 6-lane roadway typical section as a Cost Feasible Major Roadway Project (2025-2045). The PD&E on Gibsonton Drive from Fern Hill Drive to US 301 (450438-1) is currently funded in the FDOT Work Program for fiscal year 2022.

# 2.0 Existing Conditions

### 2.1 Roadway Geometry

to East of Fern Hill Drive

Roadway characteristics data within the AOI was obtained from FDOT Straight Line Diagrams (SLD) database and can be found in **Appendix B**. Geographic Information System (GIS) shapefiles referencing FDOT Transportation data and the Roadway Characteristics Inventory (RCI) database were also used to summarize existing roadway features.

I-75 is a north-south, limited access facility through the Gibsonton Drive interchange area, with a posted speed limit of 70 miles per hour (mph). I-75 is a six-lane urban principal arterial interstate within the study area, with a fourth outside lane in the northbound and southbound directions, north of Gibsonton Drive, serving as auxiliary lanes to/from US 301. I-75 is also part of the FDOT SIS (Roadway ID: 10075000), making it one of Florida's high priority transportation facilities for Florida's economy and mobility. Roadway characteristics were gathered for each facility being analyzed in the study area and can be found in **Table 2.1**.

Length **Speed Limit Functional Typical** Directionality Segment Classification Section (mi) (mph) I-75/SR 93A **Urban Principal** From South of Gibsonton Drive Six-Lane 0.521 70 Two-Way to North of Gibsonton Drive Arterial Interstate Divided Gibsonton Drive From West of New East Bay Road **Urban Minor** Four-Lane 45 1.000 Two-Way

Arterial

**Table 2.1: Roadway Characteristics** 

Gibsonton Drive is an east-west, four-lane Hillsborough County arterial with a 45-mph posted speed limit. Gibsonton Drive provides access to the unincorporated communities of Gibsonton, Riverview, Lithia, Boyette, Bloomingdale, and Fish Hawk in the greater Tampa Bay Region. The existing lane geometry and control type for each of the study intersections and I-75 mainline is shown in **Figure 2.1** and **Figure 2.2**.

Undivided

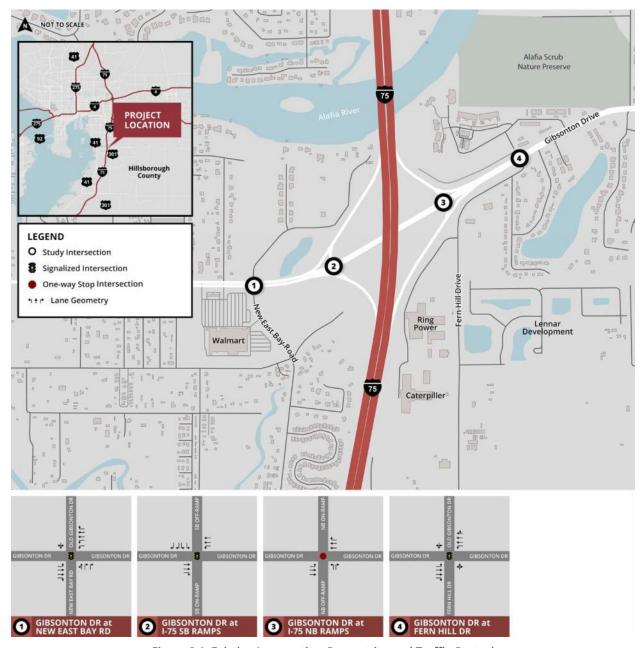



Figure 2.1: Existing Intersection Geometries and Traffic Control

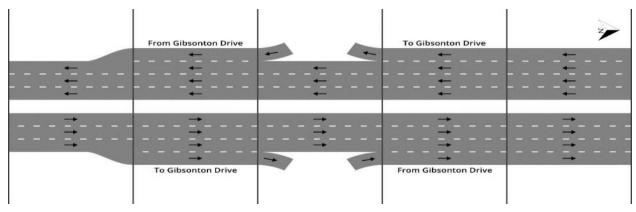



Figure 2.2: Existing I-75 Lane Geometry

### 2.2 Land-Use

Land-use maps, obtained from the Hillsborough County Planning Commission, were reviewed. Gibsonton Drive has a context classification of C3C-Suburban Commercial, for the roadway network within the study limits. This type of roadway network uses large blocks with large building footprints and parking lots on a disconnected or sparse roadway network. The existing land-use is predominantly comprised of light/heavy commercial, and single family/mobile homes. **Figure 2.3** shows the existing land-use of the area surrounding the I-75 and Gibsonton Drive interchange.

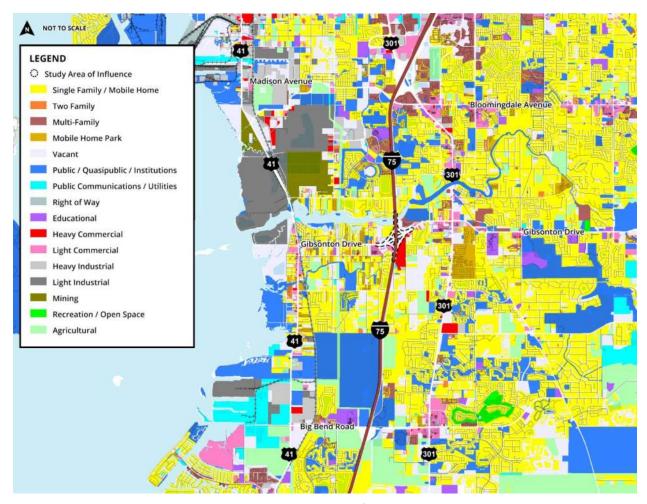



Figure 2.3: Existing Land Use Map

#### 2.3 Safety

#### 2.3.1 Crash Data

Historical crash data within the study area was obtained from FDOT's Crash Analysis Reporting (CAR) System and the University of Florida's Signal Four Analytic database for the five-year period from 2016 to 2020. The historical crash data included crashes that are coded to locations within the AOI, along Gibsonton Drive from New East Bay Road to Fern Hill Drive, including the I-75 merge/diverge ramps. The data collected includes crash frequency, type, severity, lighting conditions (day versus night), and pavement surface conditions (wet versus dry). Crash data and FDOT Statewide Segment and Intersection Crash Rates can be found in **Appendix C**.

### 2.3.2 Crash Analysis

A total of 557 total crashes, over the five-year period from 2016 to 2020, were reported within the study area. Of the 557 total crashes, there were three fatal crashes, 254 crashes involving personal injury, and 300 crashes that were property damage only. The overall crash frequency averaged an approximate 112 crashes per year. The highest three crash types included: 257 (46.1 percent) rear end crashes, 78 (14.0 percent) sideswipe crashes, and 70 (12.6 percent) left turn crashes. There were 123 (22.1 percent) crashes reported with wet surface conditions. A total of 211 (37.9 percent) crashes were reported under dark lighting conditions, which is higher than the statewide average of 35 percent for nighttime crashes. Crash data is summarized in **Table 2.2. Figure 2.4** shows the crash heat map for crashes within the study area.

Table 2.2: Crash Data Summary

| Category             | 2016 | 2017 | 2018 | 2019 | 2020 | Total | Mean  | Percentage |
|----------------------|------|------|------|------|------|-------|-------|------------|
| Туре                 |      |      |      |      |      |       |       |            |
| Angle                | 16   | 16   | 5    | 1    | 2    | 40    | 8.0   | 7.18%      |
| Bicycle              | 0    | 0    | 0    | 0    | 1    | 1     | 0.2   | 0.18%      |
| Head On              | 0    | 1    | 0    | 0    | 0    | 1     | 0.2   | 0.18%      |
| Hit Fixed Object     | 17   | 11   | 8    | 9    | 11   | 56    | 11.2  | 10.05%     |
| Hit Non-Fixed Object | 1    | 2    | 0    | 1    | 2    | 6     | 1.2   | 1.08%      |
| Left Turn            | 8    | 10   | 21   | 17   | 14   | 70    | 14.0  | 12.57%     |
| Other                | 3    | 1    | 3    | 2    | 0    | 9     | 1.8   | 1.62%      |
| Overturn/Rollover    | 2    | 5    | 1    | 6    | 2    | 16    | 3.2   | 2.87%      |
| Pedestrian           | 1    | 0    | 1    | 1    | 0    | 3     | 0.6   | 0.54%      |
| Ran Off Road         | 0    | 0    | 1    | 0    | 0    | 1     | 0.2   | 0.18%      |
| Rear End             | 53   | 61   | 44   | 49   | 50   | 257   | 51.4  | 46.14%     |
| Right Turn           | 0    | 3    | 3    | 1    | 0    | 7     | 1.4   | 1.26%      |
| Sideswipe            | 18   | 20   | 13   | 15   | 12   | 78    | 15.6  | 14.00%     |
| Single Vehicle       | 3    | 1    | 2    | 1    | 5    | 12    | 2.4   | 2.15%      |
| Total                | 122  | 131  | 102  | 103  | 99   | 557   | 111.4 | 100.00%    |
| Severity             |      |      |      |      |      |       |       |            |
| Fatal                | 1    | 1    | 1    | 0    | 0    | 3     | 0.6   | 0.54%      |
| Severe Injury        | 10   | 13   | 10   | 4    | 10   | 47    | 9.4   | 8.44%      |
| Moderate Injury      | 22   | 19   | 18   | 19   | 21   | 99    | 19.8  | 17.77%     |
| Minor Injury         | 25   | 19   | 14   | 28   | 22   | 108   | 21.6  | 19.39%     |
| Property Damage Only | 64   | 79   | 59   | 52   | 46   | 300   | 60.0  | 53.86%     |
| Total                | 122  | 131  | 102  | 103  | 99   | 557   | 111.4 | 100.00%    |
| Lighting Condition   |      |      |      |      |      |       |       |            |
| Day                  | 83   | 80   | 70   | 59   | 54   | 346   | 69.2  | 62.12%     |
| Dawn                 | 2    | 3    | 5    | 2    | 2    | 14    | 2.8   | 2.51%      |
| Dusk                 | 6    | 12   | 7    | 4    | 9    | 38    | 7.6   | 6.82%      |
| Dark - Lighted       | 17   | 24   | 15   | 31   | 25   | 112   | 22.4  | 20.11%     |
| Dark - Not Lighted   | 14   | 12   | 5    | 7    | 9    | 47    | 9.4   | 8.44%      |
| Total                | 122  | 131  | 102  | 103  | 99   | 557   | 111.4 | 100.00%    |
| Surface Condition    |      |      |      |      |      |       |       |            |
| Dry                  | 81   | 107  | 86   | 84   | 76   | 434   | 86.8  | 77.92%     |
| Wet                  | 41   | 24   | 16   | 19   | 23   | 123   | 24.6  | 22.08%     |
| Total                | 122  | 131  | 102  | 103  | 99   | 557   | 111.4 | 100.00%    |

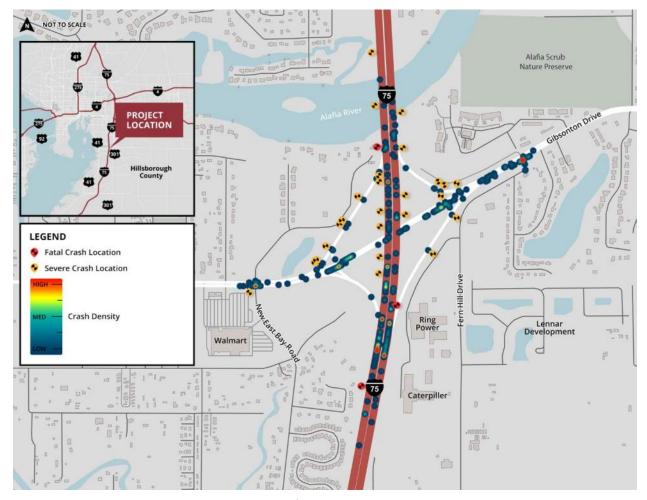



Figure 2.4: Crash Heat Map (2016 to 2020)

Roadway segments and intersection crash rates were calculated and compared with statewide averages for similar highway facilities throughout the State of Florida. For the purposes of this crash analysis, crashes were divided into three location types: segment, intersection, and ramp. Crashes located within 250 feet of an intersection were categorized as an Intersection related crash. Crash severities for northbound I-75, southbound I-75, combined intersections on Gibsonton Drive, combined segments on Gibsonton Drive, and combined northbound and southbound I-75 on/off-ramps over the five-year period are shown in **Figure 2.5**. Additionally, segments along I-75 and Gibsonton Drive were sorted into sections based on AADT.

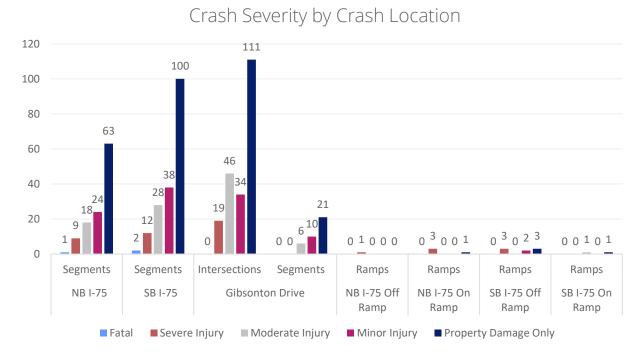



Figure 2.5: Crash Severity by Crash Location

Northbound I-75 roadway segments had 115 (20.6 percent) crashes. The most common crash type being rear end due to careless/negligent driving. Roadway conditions of interest for these predominant crashes are summarized by the location as follows:

- Northbound I-75 south of Gibsonton Drive off-ramp: 42 crashes
  - 43 percent occurred under dark conditions.
  - 33 percent occurred under wet surface conditions.
- Northbound I-75 from off-ramp to Gibsonton Drive to on-ramp from Gibsonton Drive: 60 crashes
  - 40 percent occurred under wet surface conditions.
- Northbound I-75 north of on-ramp from Gibsonton Drive: 13 crashes
  - 69 percent occurred under wet surface conditions.

Southbound I-75 roadway segments had 180 (32.3 percent) crashes. The most common crash type being rear end crashes due to careless/negligent driving. Roadway conditions of interest for these predominant crashes are summarized by location as follows:

- Southbound I-75 south of on-ramp from Gibsonton Drive: 23 crashes
  - 48 percent occurred under dark conditions.
- Southbound I-75 on-ramp from Gibsonton Drive to off-ramp to Gibsonton Drive: 148 crashes
  - 45 percent occurred under dark conditions.
- Southbound I-75 north of off-ramp to Gibsonton Drive: 9 crashes

Gibsonton Drive Intersections had 210 (37.7 percent) crashes. The most common crash type being rear end and left turn crashes due to careless/negligent driving and failing to yield the right-of-way. Roadway conditions of interest for these predominant crashes are summarized by location as follows:

- New East Bay Road: 31 crashes
- 1-75 southbound ramps: 56 crashes
  - 43 percent occurred under dark conditions.
- I-75 northbound ramps: 42 crashes
  - 57 percent occurred under dark conditions.
- Fern Hill Drive: 81 crashes

Gibsonton Drive roadway segments reported a low crash frequency with 37 crashes. The most common crash type being rear end and sideswipe crashes due to careless driving. Roadway conditions of interest for these predominant crashes are summarized by location as follows:

- Gibsonton Drive between New East Bay Road and I-75 southbound ramps: 5 crashes
  - 40 percent occurred under dark conditions.
- Gibsonton Drive between I-75 southbound Ramps and I-75 northbound ramps: 15 crashes
- Gibsonton Drive between I-75 northbound Ramps and Fern Hill Dr: 17 crashes

I-75 off-ramps reported a low crash frequency with 9 crashes. The most common crash type being overturn/rollover crashes due to reckless driving and lane departure. Roadway conditions of interest for these predominant crashes are summarized by location as follows:

- NB I-75 off-ramp to Gibsonton Drive: 1 crash
- SB I-75 off-ramp to Gibsonton Drive: 8 crashes
  - 63 percent occurred under dark conditions.

I-75 on-ramps reported the lowest crash frequency with 6 crashes. The most common crash type being overturn/rollover crashes due to careless driving and lane departure. Roadway conditions of interest for these predominant crashes are summarized by location as follows:

- NB I-75 on-ramp from Gibsonton Drive: 4 crashes
  - 50 percent occurred under dark conditions.
- SB I-75 on-ramp from Gibsonton Drive: 2 crashes
  - 50 percent occurred under dark conditions.

#### 2.3.3 Segment Crash Rate

The roadway segment crash rates for the AOI are shown in **Table 2.3**. The segment crash rates exclude crashes that occurred within 250 feet of study area intersections. The segment crash rates range from 0.255 crashes per million vehicle miles traveled (MVMT) (on southbound I-75, north of the off-ramp to Gibsonton Drive) to a high of 4.462 crashes per MVMT (on Gibsonton Drive, between the I-75 northbound ramps and Fern Hill Drive). Note that ramps do not have statewide average crash rates, there is no comparison threshold to determine if these crash rates are high or low.

For northbound I-75 there are two segments (south of the off-ramp to Gibsonton Drive and north of off-ramp to Gibsonton Drive to south of on-ramp from Gibsonton Drive) with crash rates higher than the statewide average. The majority of crashes within these areas, involved rear end and sideswipe crashes primarily due to congestion.

For southbound I-75 there is one segment (north of the on-ramp from Gibsonton Drive to south of the off-ramp to Gibsonton Drive) that is higher than the statewide average. Of the 148 crashes, reported on this segment, rear end and sideswipe crashes contributed 78 percent among all crash types. In this

section, 45 percent of crashes occurred during dark conditions. Additionally, a fatal head-on crash occurred due to the at fault driver driving on the wrong side of the roadway.

Along Gibsonton Drive there are two segments (between the ramp terminals and between the I-75 northbound ramp terminal and Fern Hill Drive) that have crash rates higher than the statewide average. Rear end crashes contributed to approximately 73 percent of crashes along these segments. This may be primarily due to congestion.

Table 2.3: Segment Crash Rates

| Location                                                                                   | Total 5-year<br>Crashes | Crash Rate* | Statewide<br>Average** |
|--------------------------------------------------------------------------------------------|-------------------------|-------------|------------------------|
| Segment NB I-75 (Urban Interstate)                                                         |                         |             |                        |
| NB I-75 South of Off-ramp to Gibsonton Drive                                               | 42                      | 1.362       | 0.992                  |
| NB I-75 North of Off-ramp to Gibsonton Drive to South of On-ramp from Gibsonton Drive      | 60                      | 1.001       | 0.992                  |
| NB I-75 North of On-ramp From Gibsonton Drive                                              | 13                      | 0.356       | 0.992                  |
| Segment SB I-75 (Urban Interstate)                                                         |                         |             |                        |
| SB I-75 South of On-ramp From Gibsonton Drive                                              | 23                      | 0.746       | 0.992                  |
| SB I-75 From North of On-ramp from Gibsonton Drive to South of Off-ramp to Gibsonton Drive | 148                     | 2.660       | 0.992                  |
| SB I-75 North of Off-ramp to Gibsonton Drive                                               | 9                       | 0.255       | 0.992                  |
| Segment Gibsonton Dr (Suburban 4-5 2-way Divided Raised)                                   |                         |             |                        |
| Gibsonton Drive Between New East Bay Road and I-75 SB Ramps                                | 5                       | 1.328       | 1.747                  |
| Gibsonton Drive Between I-75 SB Ramps and I-75 NB Ramps                                    | 15                      | 2.549       | 1.747                  |
| Gibsonton Drive Between I-75 NB Ramps and Fern Hill Drive                                  | 17                      | 4.462       | 1.747                  |

<sup>\*</sup>Segment crash rate = number of crashes per million vehicle miles traveled

Note: Red highlight indicates crash rate higher than the statewide crash average

### 2.3.4 Intersection Crash Rate

The intersection crash rates for the study area are shown in **Table 2.4**. The intersection crash rates range from a low of 1.006 crashes per million entering vehicles (MEV) at the Gibsonton Drive and southbound I-75 ramp terminal to a high of 3.551 crashes per MEV at the Gibsonton Drive and Fern Hill Drive intersection.

The crash rate at the Gibsonton Drive and New East Bay Road intersection is higher than the statewide average. Rear end crashes occurring during both AM and PM peak periods contributed to approximately 50 percent of crashes at this intersection. This may be primarily due to congestion at the intersection leading to stop-and-go conditions on Gibsonton Drive.

The crash rate at the Gibsonton Drive and Fern Hill Drive intersection is higher than the statewide average. The majority of crashes occur during AM, Midday, and PM peak periods, contributing to approximately 80 percent of crashes at this intersection. This is likely due to a higher proportion of left turn crashes related to the motorist failing to yield the right-of-way.

<sup>\*\*</sup>Source: FDOT Crash Analysis Reporting (CAR) Online Database

Table 2.4: Intersection Crash Rates

| ID | Location                                                                             | Total 5-year<br>Crashes | Crash<br>Rate* | Statewide<br>Average** |
|----|--------------------------------------------------------------------------------------|-------------------------|----------------|------------------------|
| 1  | Gibsonton Dr at New East Bay Rd<br>(Suburban 4-5 Lane 2-way Divided Raised – 3 legs) | 31                      | 1.359          | 0.526                  |
| 2  | Gibsonton Dr at I-75 southbound ramps<br>(Ramp Rural – 3 legs)                       | 56                      | 1.006          | 1.502                  |
| 3  | Gibsonton Dr at I-75 northbound ramps<br>(Ramp Rural – 3 legs)                       | 42                      | 1.386          | 1.502                  |
| 4  | Gibsonton Dr at Fern Hill Dr<br>(Suburban 4-5 Lane 2-way Divided Raised – 3 legs)    | 81                      | 3.551          | 0.526                  |

<sup>\*</sup>Intersection crash rate = number of crashes per million entering vehicles

#### 2.3.5 Economic Loss

Monetary estimates of property damage and economic loss due to injury or a fatality were calculated using average unit costs from the United States Department of Transportation (USDOT)/Federal Highway Administration (FHWA) KABCO (K-Fatal; A-Incapacitating injury; B-Non incapacitating injury; C-Possible injury; and O-No injury) injury classification scale. FDOT's CAR Online provides unit costs for calculating the cost of crashes and injuries. Based on these unit costs that are documented in Table 122.6.2 of the Florida Design Manual (FDM), the crashes in the study area during the five-year period from 2016-2020 resulted in an estimated economic loss of approximately \$105.4 million as shown in **Table 2.5**.

Table 2.5: Estimated Crash Economic Loss

| Crash Severity                       | KABCO<br>Cost* | Number of<br>Crashes | Economic<br>Loss |
|--------------------------------------|----------------|----------------------|------------------|
| Fatal                                | \$10,890,000   | 3                    | \$32,267,000     |
| Severe Injury (Incapacitating)       | \$888,030      | 47                   | \$41,737,410     |
| Moderate Injury (Non-incapacitating) | \$180,180      | 99                   | \$17,837,820     |
| Minor Injury                         | \$103,950      | 108                  | \$11,226,600     |
| Property Damage Only                 | \$7,700        | 300                  | \$2,310,000      |
| Total                                |                | 557                  | \$105,378,830    |

<sup>\*</sup>Source: FDOT State Safety Office's Crash Analysis Reporting (CARs) Online. Published 11/20/20.

#### 2.4 Traffic

### 2.4.1 Traffic Data Collection

Due to the impacts of COVID-19 on data collection efforts, the 2017 data collection conducted to support the I-75 PD&E Study was used as a basis for this effort. Historical data from the 2019 Florida Traffic Online (FTO) database and forecasting efforts conducted during the I-75 PD&E Study was examined to develop existing year (2020) volumes. The 2017 data collection effort was conducted during the three-day period from June 6-8, 2017. Copies of the 2017 data collection, FTO count data, and signal timings provided by Hillsborough County can be found in **Appendix D**.

<sup>\*\*</sup>Source: FDOT Crash Analysis Reporting (CAR) Online Database

Note: Red highlight indicates crash rate higher than the statewide crash average

There were four 4-hour turning movement counts (TMCs) between 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM, eight 72-hour directional ramp counts, and eight 72-hour bi-directional traffic volumes along Gibsonton Drive and the cross streets. Data collection location and types are depicted in **Figure 2.6** and are listed as follows:

### 4-Hour (7 AM to 9 AM and 4 PM to 6 PM) Turning Movement Counts (4 Locations):

- Gibsonton Drive at New East Bay Road
- Gibsonton Drive at I-75 southbound ramps
- Gibsonton Drive at I-75 northbound ramps; and
- Gibsonton Drive at Fern Hill Drive

### 72-Hour Bi-Directional Traffic Volumes on Gibsonton Drive (4 Locations):

- West of New East Bay Road
- Between New East Bay Road and I-75 southbound ramps
- Between I-75 northbound ramps and Fern Hill Drive; and
- East of Fern Hill Drive

### 72-Hour Directional I-75 Ramp Counts (8 Locations):

- Northbound I-75 on-ramp from eastbound Gibsonton Drive
- Northbound I-75 on-ramp from westbound Gibsonton Drive
- Northbound I-75 off-ramp to eastbound Gibsonton Drive
- Northbound I-75 off-ramp to westbound Gibsonton Drive
- Southbound I-75 on-ramp from eastbound Gibsonton Drive
- Southbound I-75 on-ramp from westbound Gibsonton Drive
- Southbound I-75 off-ramp to eastbound Gibsonton Drive; and
- Southbound I-75 off-ramp to westbound Gibsonton Drive

### 72-Hour Machine Counts on Cross Streets (4 Locations):

- New East Bay Road south of Gibsonton Drive
- New East Bay Road/Old Gibsonton Drive north of Gibsonton Drive
- Fern Hill Drive south of Gibsonton Drive; and
- Fern Hill Drive/Old Gibsonton Drive north of Gibsonton Drive

### FDOT Florida Traffic Online Sites (6 Locations):

- I-75 mainline south of Gibsonton Drive
- I-75 mainline north of Gibsonton Drive
- Northbound I-75 on-ramp
- Northbound I-75 off-ramp
- Southbound I-75 on-ramp; and
- Southbound I-75 off-ramp

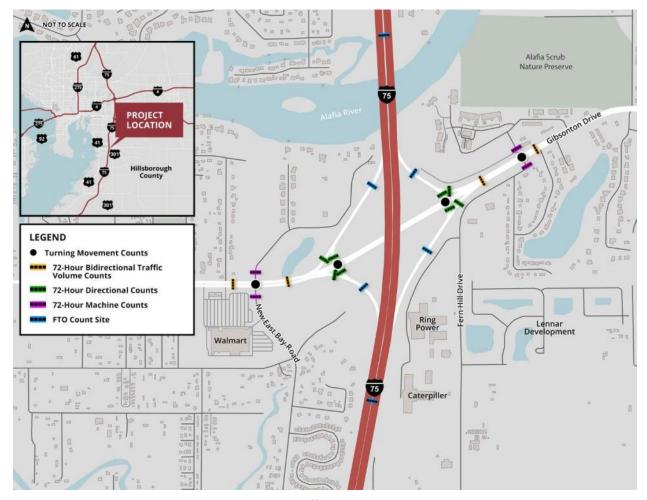



Figure 2.6: Traffic Count Locations

## 2.4.2 Design Traffic Factors

Design traffic factors, including design hour factor (K), directional factor (D), and Design Hour Truck factor ( $T_f$ ), were determined using historical traffic data obtained from the FDOT 2019 Florida Traffic Online (FTO) database and field collected counts. A standard K factor of 9.0, defined in the *FDOT Project Traffic Forecasting Handbook (2019)*, was used for all volume development.  $T_f$  is identified by the *FDOT Project Traffic Forecasting Handbook (2019)* as half of the 24-hour truck percentage (T). Historical traffic data and traffic parameter calculations can be found in **Appendix D**. Reported factors for use in all analysis can be found in **Table 2.6**. Detailed information of K and D variation is shown in **Appendix E**.

Table 2.6: Design Traffic Factors

| Segment         | Recommended Traffic Factors |       |      |       |      |  |  |
|-----------------|-----------------------------|-------|------|-------|------|--|--|
|                 | K                           | D     | Т    | $T_f$ | MOCF |  |  |
| I-75 (Mainline) | 9.0%                        | 58.0% | 7.2% | 4.0%  | 0.95 |  |  |
| Gibsonton Drive | 9.0%                        | 58.0% | 8.7% | 5.0%  | 0.95 |  |  |

The AM and PM global peak hours were determined through observation of the collected field data and occur from 7:15 AM to 8:15 AM and 5:15 PM to 6:15 PM, respectively.

# 2.4.3 Existing Year (2020) Volume Development

The existing year (2020) Annual Average Daily Traffic (AADT) volumes were developed by interpolation between 2017 AADTs and 2045 AADTs from the I-75 PD&E Study. The existing year (2020) AADTs were reviewed throughout the study area to ensure demand throughout the network did not represent any unreasonable imbalance and all values were greater than the FDOT 2019 FTO counts. A summary of the resulting AADTs can be found in **Table 2.7**. Linear interpolation between the 2017 and 2045 design traffic volumes were used to yield the existing year (2020) directional design hour volumes (DDHVs) for this analysis.

**Figure 2.7** and **Figure 2.8** show the existing year (2020) AADT and DDHVs for both the AM and PM peak hours, respectively. The Volume Development Memorandum can be found in **Appendix E**.

Table 2.7: Existing Year (2020) AADT Calculation

| Sarmant                                             |         | Existing Year |      |             |
|-----------------------------------------------------|---------|---------------|------|-------------|
| Segment                                             | 2017    | 2045          | AGR  | (2020) AADT |
| Gibsonton Drive                                     |         |               |      |             |
| West of New East Bay Road                           | 15,000  | 37,300        | 5.3% | 17,400      |
| Between New East Bay Road and I-75 SB Ramp Terminal | 28,300  | 52,900        | 3.1% | 30,900      |
| Between I-75 SB and I-75 NB Ramp Terminals          | 35,500  | 60,100        | 2.5% | 38,100      |
| Between I-75 NB Ramp Terminal and Fern Hill Drive   | 46,500  | 70,700        | 1.9% | 49,100      |
| East of Fern Hill Drive                             | 44,600  | 68,600        | 1.9% | 47,200      |
| Cross Streets                                       |         |               |      |             |
| Old Gibsonton Drive, North of Gibsonton Drive       | 2,100   | 2,600         | 0.9% | 2,200       |
| New East Bay Road, South of Gibsonton Drive         | 11,900  | 14,800        | 0.9% | 12,200      |
| Fern Hill Drive, North of Gibsonton Drive           | 2,300   | 3,000         | 1.1% | 2,400       |
| Fern Hill Drive, South of Gibsonton Drive           | 3,200   | 4,100         | 1.0% | 3,300       |
| I-75 Ramps                                          |         |               |      |             |
| I-75 SB Off-Ramp                                    | 18,000  | 32,200        | 2.8% | 19,500      |
| I-75 NB Off-Ramp                                    | 4,300   | 5,300         | 0.8% | 4,400       |
| I-75 SB On-Ramp                                     | 5,200   | 6,800         | 1.1% | 5,400       |
| I-75 NB On-Ramp                                     | 18,500  | 29,700        | 2.2% | 19,700      |
| I-75 Mainline                                       |         |               |      |             |
| I-75 Mainline, North of Gibsonton Drive             | 147,500 | 261,000       | 2.7% | 159,600     |
| I-75 Mainline, South of Gibsonton Drive             | 120,500 | 211,200       | 2.7% | 130,200     |

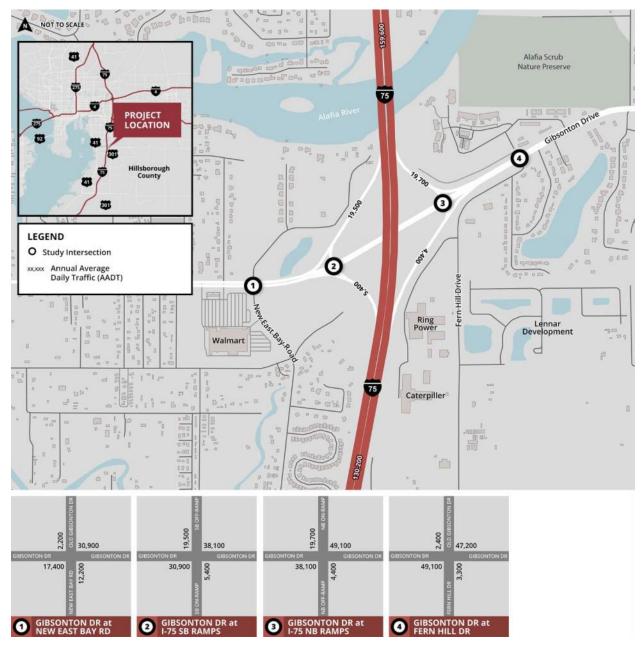



Figure 2.7: Existing Year (2020) AADTs

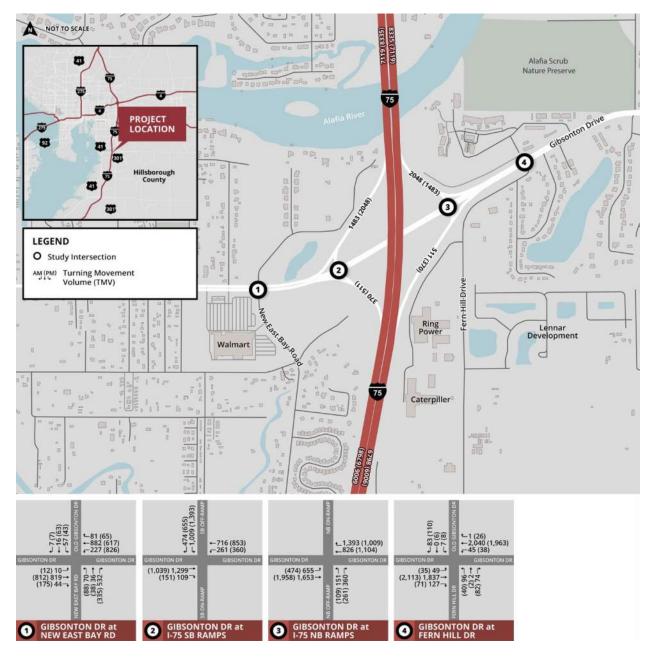



Figure 2.8: Existing Year (2020) DDHVs

# 2.5 Traffic Operational Analysis

Traffic Software Integrated System – Corridor Simulation (CORSIM), version 6.3, was used to evaluate the existing year (2020) operational characteristics of the I-75 and Gibsonton Drive interchange study area. The previously calibrated model for the 2017 I-75 PD&E Study was used as the baseline for this model. The study area, from the ramp terminal at Big Bend Road north to the ramp terminal at US-301 was extracted from this model and additional calibration efforts were performed at the I-75 at Gibsonton Drive interchange area of influence. Due to the effects of COVID-19 on the project team's ability to collect data at the project's inception, a check was conducted to ensure that the forecast volumes used as part of the I-75 PD&E could be effectively used to interpolate reasonable demand in the existing year (2020) used for analysis. 2017 and 2045 Demand volumes from the I-75 PD&E were interpolated and checked against 2019 FTO AADTs and it was determined reasonable to interpolate to estimate the existing year (2020) demand for use in microsimulation. However, as synthetic data cannot be calibrated, it was determined to use the raw data collected in 2017 along with RITIS speed data to calibrate the CORSIM model to a pre-COVID-19 condition that could be used to assess traffic operations. **Appendix F** provides the peak hour results of the calibration year (2017) CORSIM calibration analysis.

Currently, the existing traffic patterns within the study area suggest the peak direction of traffic flow in the AM peak period is northbound on I-75 (to Downtown Tampa) and to I-75 from Gibsonton Drive, while the peak direction of traffic flow in the PM peak period is southbound on I-75 (away from Downtown Tampa) and away from I-75 on Gibsonton Drive.

## 2.5.1 Calibration Methodology

The CORSIM microsimulation model was calibrated with travel time runs, observed speeds and to the initial model calibration year (2017) traffic counts collected in the field, which is consistent with the approved MLOU. A four-hour AM and four-hour PM peak period CORSIM analysis was conducted. **Table 2.8** provides the temporal distribution.

Northbound I-75, south Southbound I-75, north Gibsonton Simulation of Gibsonton Drive2 of Gibsonton Drive<sup>2</sup> Drive1 Starting Time AM Seeding Period (0.5 hr) 5:45 AM N/A N/A N/A 97% 92% 94% AM First Shoulder (1 hr) 6:15AM 100% AM Peak Hour (1 hr) 7:15 AM 100% 100% 88% AM Second Shoulder (1 hr) 86% 94% 8:15 AM AM Dissipating Period (0.5 hr) 8:45 AM N/A N/A N/A PM Seeding Period (0.5 hr) 3:45 PM N/A N/A N/A PM First Shoulder (1 hr) 97% 4:15 PM 100% 94% PM Peak Hour (1 hr) 5:15 PM 100% 100% 100% PM Second Shoulder (1 hr) 6:15 PM 80% 78% 94% PM Dissipating Period (0.5 hr) 6:45 PM N/A N/A N/A

Table 2.8: Temporal Distribution

Note:

<sup>1 –</sup> Temporal distribution is based on previously approved I-75 PD&E study.

<sup>2 -</sup> Temporal distribution is based on FTO counts on I-75 north of Gibsonton Drive and south of Gibsonton Drive

The extended period of microsimulation analysis provided "build-up" of traffic congestions and the corresponding durations. The evaluation of existing traffic operations was based on the results of ten (10) runs of the AM and PM CORSIM microsimulation models using varying random seed numbers. The microsimulation performed for this IMR is consistent with guidelines provided in the Federal Highway Administration (FHWA) Traffic Analysis Toolbox Volume III and the FDOT 2021 Traffic Analysis Handbook.

I-75 ramp and mainline volumes, and all CORSIM entry volumes, were calibrated to be within the thresholds specified below, as outlined in the FDOT 2021 Traffic Analysis Handbook:

- Low volume links Individual link flows < 700 vehicles/hours Threshold is to be within 100 vehicles/hour of field flows for more than 85 percent of the links.
- Medium volumes links Individual link flows between 700 and 2,700 vehicles/hour -Threshold is to be within 15 percent of field flows for more than 85 percent of links;
- High volume links Individual link flows > 2,700 vehicles/hour Threshold is to be within 400 vehicles/hour of field flows for more than 85 percent of the links;
- Sum of all link flows across the network Threshold to be within 5 percent of the sum of all link counts;
- Simulated and measured link flows Threshold is to have a Geoffrey E. Havers (GEH) statistic value of five (5) or lower for 85% of the links;
- Speed is to be within 15% or 10 miles per hour (mph) of field measured values for 85% of the links.

#### 2.5.2 Calibration Parameters and Results

Model parameters were set to ensure calibration targets met calibration year (2017) traffic conditions. The calibration analysis for the existing year (2017) AM and PM peak periods involved modifications to both the global and node-link specific model parameters. Field observed data and existing year (2017) traffic volumes provided a basis to compare simulated traffic volume. The following model parameters were changed in both the AM and PM peak hours from the I-75 PD&E Study CORSIM model:

- Car Following Sensitivity Multiplier Adjusted on the I-75 southbound approach to the off-ramp for links 310-311 (130 percent), 311-312 (140 percent), 312-314 (155 percent), 314-316 (155 percent), 316-318 (158 percent)
- Headway Distribution: Set to Erlang Distribution with parameter "a" set to 1

The calibration results summarized in **Table 2.9** indicate that the CORSIM model is sufficiently reproducing the calibration year (2017) field collected volumes for all freeway and cross street traffic. All roadway segments have a GEH value less than five during the AM and PM peak hours. The sum of volume in the network during both the AM and PM peak hours is within 5 percent of the field observed volumes during the same time. Both the AM and PM peak hours met the high, medium, and low volume checks.

Table 2.9: CORSIM Calibration Results (field collected counts vs. simulated traffic volume)

|                                                |                 | AM Pe           | ak Hour        |         |     |                 |                 | eak Hour       |         |     |
|------------------------------------------------|-----------------|-----------------|----------------|---------|-----|-----------------|-----------------|----------------|---------|-----|
| Location                                       | Count           | Simulated       | Volume         |         |     | Count           | Simulated       | Volume         |         |     |
|                                                | Volume<br>(vph) | Volume<br>(vph) | Diff.<br>(vph) | % Diff. | GEH | Volume<br>(vph) | Volume<br>(vph) | Diff.<br>(vph) | % Diff. | GEH |
| Northbound I-75                                |                 |                 |                |         |     |                 |                 |                |         |     |
| South of Gibsonton Drive                       | 4,995           | 4,900           | -95            | -1.9%   | 1.4 | 3,953           | 3,861           | -92            | -2.3%   | 1.5 |
| Between Gibsonton Drive<br>Off and On Ramps    | 4,741           | 4,650           | -91            | -1.9%   | 1.3 | 3,579           | 3,515           | -64            | -1.8%   | 1.1 |
| North of Gibsonton Drive                       | 7,055           | 6,699           | -356           | -5.1%   | 4.3 | 4,619           | 4,457           | -162           | -3.5%   | 2.4 |
| Southbound I-75                                |                 |                 |                |         |     |                 |                 |                |         |     |
| North of Gibsonton Drive                       | 4,367           | 4,182           | -185           | -4.2%   | 2.8 | 6,721           | 6,628           | -93            | -1.4%   | 1.1 |
| Between Gibsonton Drive<br>Off and On Ramps    | 3,422           | 3,252           | -170           | -5.0%   | 2.9 | 4,630           | 4,560           | -70            | -1.5%   | 1.0 |
| South of Gibsonton Drive                       | 3,844           | 3,658           | -186           | -4.8%   | 3.0 | 4,946           | 4,862           | -84            | -1.7%   | 1.2 |
| Eastbound Gibsonton Drive                      |                 |                 |                |         |     |                 |                 |                |         |     |
| West of New East Bay Road                      | 467             | 457             | -10            | -2.1%   | 0.5 | 810             | 748             | -62            | -7.7%   | 2.2 |
| New East Bay Road to SB I-<br>75 Ramp Terminal | 1,017           | 989             | -28            | -2.8%   | 0.9 | 938             | 864             | -74            | -7.9%   | 2.5 |
| Between SB and NB I-75<br>Ramp Terminals       | 1,068           | 1,038           | -30            | -2.8%   | 0.9 | 1,698           | 1,593           | -104           | -6.1%   | 2.6 |
| NB I-75 Ramp Terminal to<br>Fern Hill Drive    | 1,023           | 987             | -36            | -3.5%   | 1.1 | 2,283           | 2,148           | -135           | -5.9%   | 2.9 |
| East of Fern Hill Drive                        | 1,008           | 979             | -30            | -2.9%   | 0.9 | 2,273           | 2,136           | -137           | -6.0%   | 2.9 |
| Westbound Gibsonton Drive                      |                 |                 |                |         |     |                 |                 |                |         |     |
| East of Fern Hill Drive                        | 2,258           | 2,207           | -51            | -2.3%   | 1.1 | 1,248           | 1,153           | -96            | -7.7%   | 2.8 |
| Fern Hill Drive to NB I-75<br>Ramp Terminal    | 2,301           | 2,192           | -110           | -4.8%   | 2.3 | 1,314           | 1,210           | -104           | -7.9%   | 2.9 |
| Between NB and SB I-75<br>Ramp Terminals       | 624             | 677             | 53             | 8.5%    | 2.1 | 594             | 568             | -25            | -4.3%   | 1.1 |
| SB I-75 Ramp Terminal to<br>New East Bay Road  | 758             | 793             | 35             | 4.6%    | 1.3 | 1,078           | 1,063           | -16            | -1.4%   | 0.5 |
| West of New East Bay Road                      | 638             | 661             | 23             | 3.6%    | 0.9 | 502             | 500             | -2             | -0.4%   | 0.1 |
| Northbound New East Bay Roa                    | nd              |                 |                |         |     |                 |                 |                |         |     |
| South of Gibsonton Drive                       | 640             | 625             | -15            | -2.3%   | 0.6 | 277             | -23             | -7.7%          | 1.4     | 300 |
| North of Gibsonton Drive                       | 93              | 95              | 2              | 2.2%    | 0.2 | 71              | -8              | -10.1%         | 0.9     | 79  |
| Southbound New East Bay Roa                    | nd              |                 |                |         |     |                 |                 |                |         |     |
| North of Gibsonton Drive                       | 63              | 62              | -1             | -1.6%   | 0.1 | 63              | 58              | -5             | -7.9%   | 0.6 |
| South of Gibsonton Drive                       | 180             | 191             | 11             | 6.1%    | 0.8 | 732             | 710             | -22            | -3.0%   | 8.0 |
| Northbound Fern Hill Drive                     |                 |                 |                |         |     |                 |                 |                |         |     |
| South of Gibsonton Drive                       | 165             | 99              | -66            | -40.0%  | 5.7 | 151             | 128             | -23            | -15.2%  | 1.9 |
| North of Gibsonton Drive                       | 72              | 68              | -4             | -5.6%   | 0.5 | 56              | 56              | 0              | 0.0%    | 0.0 |
| Southbound Fern Hill Drive                     |                 |                 |                |         |     |                 |                 |                |         |     |
| North of Gibsonton Drive                       | 43              | 42              | -1             | -2.3%   | 0.2 | 64              | 59              | -5             | -7.8%   | 0.6 |
| South of Gibsonton Drive                       | 108             | 103             | -5             | -4.6%   | 0.5 | 103             | 89              | -14            | -13.6%  | 1.4 |

In addition to these volume-based calibration targets, the CORSIM model was calibrated to available field collected speed data provided in **Table 2.10**. The field collected speed data for I-75 and Gibsonton Drive was collected through the Regional Integrated Transportation Information System (RITIS) and is provided in **Appendix D**. RITIS is a clearinghouse for transportation related data. The specific data collected for this calibration was average five-minute speed data, collected for all Tuesdays, Wednesdays, and Thursdays from August 15, 2017, through September 7, 2017. The eastern segment of Gibsonton Drive was the only location that did not meet the speed criteria, with simulated speeds higher than the field observed speed in the eastbound direction during the PM peak hour and in the westbound direction during the AM Peak Hour. Calibrating the speed at this location, would require introducing additional friction which would decrease volume throughput. This location is well-calibrated from the perspective of volume throughput and therefore this one link was not adjusted to meet speed criteria at the risk of negatively impacting volume criteria.

Table 2.10: CORSIM Calibration Results (field collected speed vs. simulated speed)

|                                             | Destad                   |                         | AM Peak Hou                 | ır                      |         |                         | PM Peak Hou                 | ır                      |         |
|---------------------------------------------|--------------------------|-------------------------|-----------------------------|-------------------------|---------|-------------------------|-----------------------------|-------------------------|---------|
| Location                                    | Posted<br>Speed<br>(mph) | Field<br>Speed<br>(mph) | Simulated<br>Speed<br>(mph) | Speed<br>Diff.<br>(mph) | % Diff. | Field<br>Speed<br>(mph) | Simulated<br>Speed<br>(mph) | Speed<br>Diff.<br>(mph) | % Diff. |
| Northbound I-75                             |                          |                         |                             |                         |         |                         |                             |                         |         |
| South of Gibsonton Drive                    | 70                       | 68.3                    | 65.1                        | -3.2                    | -4.7%   | 68.3                    | 66.0                        | -2.3                    | -3.3%   |
| Between Gibsonton Drive<br>Off and On Ramps | 70                       | 68.3                    | 65.0                        | -3.3                    | -4.8%   | 68.3                    | 66.0                        | -2.3                    | -3.3%   |
| North of Gibsonton Drive                    | 70                       | 68.6                    | 64.9                        | -3.7                    | -5.4%   | 67.6                    | 66.6                        | -0.9                    | -1.4%   |
| Southbound I-75                             |                          |                         |                             |                         |         |                         |                             |                         |         |
| North of Gibsonton Drive                    | 70                       | 70.6                    | 66.7                        | -3.9                    | -5.5%   | 56.2                    | 56.9                        | 0.6                     | 1.1%    |
| Between Gibsonton Drive<br>Off and On Ramps | 70                       | 70.6                    | 65.0                        | -5.6                    | -7.9%   | 56.2                    | 64.7                        | 8.5                     | 15.0%   |
| South of Gibsonton Drive                    | 70                       | 70.5                    | 65.1                        | -5.4                    | -7.7%   | 59.7                    | 64.6                        | 4.9                     | 8.2%    |
| Eastbound Gibsonton Drive                   |                          |                         |                             |                         |         |                         |                             |                         |         |
| West of SB I-75 Ramp<br>Terminals           | 45                       | 29.9                    | 29.5                        | -0.5                    | -1.6%   | 27.6                    | 25.1                        | -2.5                    | -9.1%   |
| East of NB I-75 Ramp<br>Terminals           | 45                       | 34.8                    | 34.0                        | -0.8                    | -2.4%   | 18.5                    | 34.4                        | 15.9                    | 85.7%   |
| Westbound Gibsonton Drive                   |                          |                         |                             |                         |         |                         |                             |                         |         |
| East of NB I-75 Ramp<br>Terminals           | 45                       | 23.1                    | 34.0                        | 10.9                    | 47.1%   | 33.8                    | 36.8                        | 3.0                     | 9.0%    |
| West of SB I-75 Ramp<br>Terminals           | 45                       | 33.3                    | 27.0                        | -6.3                    | -18.8%  | 35.4                    | 25.7                        | -9.7                    | -27.3%  |

Note: Red highlight indicates that speed differences do not meet FDOT 2021 Traffic Analysis Handbook thresholds

#### 2.5.3 Existing Year (2020) Measures of Effectiveness (MOEs)

The LOS target D, as defined for urbanized areas in the FDOT LOS Policy – FDOT procedure No. 000-525-006, was used for the operational analysis of the I-75 and Gibsonton Drive interchange. A direct comparison of CORSIM Measures of Effectiveness (MOEs) to the Highway Capacity Manual (HCM) LOS cannot be made, but the equivalent HCM LOS derived from CORSIM was provided for reference purposes.

To derive equivalent density-based Highway Capacity Manual (HCM)-based Level of Service, reported density outputs from the CORSIM outputs are developed by taking link level density per lane (veh/mi/ln) and dividing by heavy vehicle factor ( $f_{HV}$ ) assuming level terrain to yield passenger car per mile per lane (pc/mi/ln) density.

MOEs [i.e., density, speed, and delay] and LOS threshold, as prescribed by the HCM, 6<sup>th</sup> Edition, were used to estimate existing and future LOS. All simulation outputs were based on the average data from 10 simulation runs. Consistent with the approved MLOU, the MOEs that were assessed from the simulation analysis include the following:

- Intersection Node Evaluation: Traffic volume, delay, and maximum queue length for the study area intersections for all movements.
- Link Evaluation Segments: Demand versus simulated traffic volume, vehicle density, and average speed within the study area.
- Network-Wide Output: Traffic volume including latent volume, total travel time, total delay time, average speed, and vehicle-miles traveled (VMT).

**Appendix G** provides the four-hour results of the existing year (2020) CORSIM Analysis.

# 2.5.4 Existing Year (2020) I-75 Mainline Segments and Ramp Merge/Diverge Areas

Within the AOI, an I-75 operational analysis was conducted for northbound and southbound mainline segments, including the ramp merge and diverge areas. The CORSIM microsimulation results for the existing year (2020) AM and PM Peak Level of Service (LOS) indicates that the southbound I-75, north of Gibsonton Drive and southbound off-ramp fail to meet the LOS target D. MOEs have been summarized for the I-75 mainline and I-75 ramp merge and diverge areas in **Table 2.11**. **Figure 2.9** illustrates the same MOEs for the interchange area. The CORSIM models supporting this analysis can also be found in **Appendix G.** 

Table 2.11: Existing Year (2020) I-75 Freeway Segment and Ramp Merge/Diverge Area Speed, Density, and LOS

| Basic Freeway Segment and<br>Ramp Merge/Diverge Areas | Туре    | No. of<br>Lanes | Time<br>Period | Demand<br>Volumes<br>(vph) | Simulated<br>Volume<br>(vph) | Speed<br>(mph) | Estimated<br>Density<br>(pc/mi/ln) | LOS* |
|-------------------------------------------------------|---------|-----------------|----------------|----------------------------|------------------------------|----------------|------------------------------------|------|
| Northbound I-75                                       |         |                 |                |                            |                              |                |                                    |      |
| South of Gibsonton Drive                              | Basic   | 3               | AM             | 6,798                      | 6,267                        | 64             | 31.2                               | D    |
| South of Gibsoriton Drive                             | Freeway | 3               | PM             | 6,006                      | 5,868                        | 65             | 29.0                               | D    |
| Off-Ramp to Gibsonton                                 | Ramp    | 3               | AM             | 6,798                      | 6,262                        | 58             | 30.8                               | D    |
| Drive                                                 | Diverge | 3               | PM             | 6,006                      | 5,868                        | 59             | 28.3                               | D    |
| Gibsonton Drive Off-Ramp                              | Basic   |                 | AM             | 6,287                      | 5,757                        | 64             | 28.8                               | D    |
| to<br>Gibsonton Drive On-Ramp                         | Freeway | 3               | PM             | 5,636                      | 5,519                        | 65             | 27.5                               | D    |
| On-Ramp from Gibsonton<br>Drive                       | Ramp    | 4               | AM             | 8,335                      | 7,702                        | 61             | 30.6                               | D    |
|                                                       | Merge   | 4               | PM             | 7,119                      | 6,800                        | 61             | 26.5                               | D    |
| North of Gibsonton Drive                              | Basic   | 4               | AM             | 8,335                      | 7,701                        | 65             | 27.5                               | D    |
| North of Gibsoriton Drive                             | Freeway | 4               | PM             | 7,119                      | 6,799                        | 65             | 24.1                               | С    |
| Southbound I-75                                       |         |                 |                |                            |                              |                |                                    |      |
| North of Gibsonton Drive                              | Basic   | 4               | AM             | 7,119                      | 5,897                        | 28             | 56.6                               | F    |
| North of dibsoritori brive                            | Freeway |                 | PM             | 8,335                      | 7,934                        | 24             | 84.1                               | F    |
| Off-Ramp to Gibsonton                                 | Ramp    | 4               | AM             | 7,119                      | 5,534                        | 39             | 42.8                               | E    |
| Drive                                                 | Diverge | <b>-</b>        | PM             | 8,335                      | 7,791                        | 42             | 45.1                               | F    |
| Gibsonton Drive Off-Ramp                              | Basic   | 2               | AM             | 5,636                      | 4,434                        | 65             | 21.9                               | С    |
| to<br>Gibsonton Drive On-Ramp                         | Freeway | 3               | PM             | 6,287                      | 5,861                        | 63             | 29.9                               | D    |
| On-Ramp from Gibsonton                                | Ramp    | 3               | AM             | 6,006                      | 4,863                        | 58             | 21.9                               | С    |
| Drive                                                 | Merge   | 3               | PM             | 6,798                      | 6,316                        | 56             | 29.8                               | D    |
| South of Gibsonton Drive                              | Basic   | 3               | AM             | 6,006                      | 4,892                        | 65             | 24.2                               | С    |
|                                                       | Freeway | <u>.</u>        | PM             | 6,798                      | 6,309                        | 64             | 31.7                               | D    |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that the density does not meet the LOS target, D

|                                                                          | Southbound I-75 Mainline |                      |       |                    |                                |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------|----------------------|-------|--------------------|--------------------------------|--|--|--|--|
| Speed (mph) (pc/mi/ln) >=63 <=26 <63-57 >26 - 35 <57-45 >35 - 45 <45 >45 |                          | From Gibsonton Drive | 111   | To Gibsonton Drive | · · · · <del>· ·</del> · · · · |  |  |  |  |
| AM Peak Hour                                                             |                          |                      |       |                    |                                |  |  |  |  |
| Demand (vph)                                                             | 6,006                    | 6,006                | 5,636 | 7,119              | 7,119                          |  |  |  |  |
| Simulated (vph)                                                          | 4,892                    | 4,863                | 4,434 | 5,534              | 5,897                          |  |  |  |  |
| Percent Processed                                                        | 81%                      | 81%                  | 79%   | 78%                | 83%                            |  |  |  |  |
| Speed (mph)                                                              | 65                       | 58                   | 65    | 39                 | 28                             |  |  |  |  |
| Estimated Density (pc/mi/ln)                                             | 24.2                     | 21.9                 | 21.9  | 42.8               | 56.6                           |  |  |  |  |
| PM Peak Hour                                                             |                          |                      |       |                    |                                |  |  |  |  |
| Demand (vph)                                                             | 6,798                    | 6,798                | 6,287 | 8,335              | 8,335                          |  |  |  |  |
| Simulated (vph)                                                          | 6,309                    | 6,316                | 5,861 | 7,791              | 7,934                          |  |  |  |  |
| Percent Processed                                                        | 93%                      | 93%                  | 93%   | 93%                | 95%                            |  |  |  |  |
| Speed (mph)                                                              | 64                       | 56                   | 63    | 42                 | 24                             |  |  |  |  |
| Estimated Density (pc/mi/ln)                                             | 31.7                     | 29.8                 | 29.9  | 45.1               | 84.1                           |  |  |  |  |

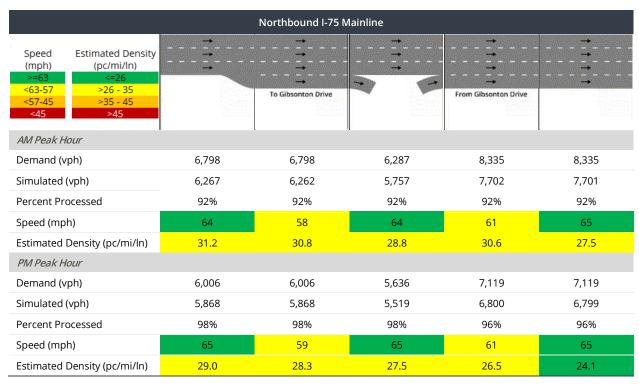



Figure 2.9: Existing Year (2020) CORSIM Freeway MOEs

#### 2.5.5 Existing Year (2020) I-75 Ramp Capacity

The I-75 on and off-ramp volumes were compared to the ramp capacities found in Exhibit 14-12 of the Highway Capacity Manual, 6<sup>th</sup> Edition (HCM). **Table 2.12** shows the volume to capacity ratios for each of the ramps. This analysis indicates that each of the ramps operates under capacity, however the northbound on-ramp during the AM peak hour and the southbound off-ramp during the PM peak hour are nearing capacity limits.

Table 2.12: Existing Year (2020) I-75 Ramp Capacity Check

| I-75 On and Off Ramp Location   | No. of<br>Lanes | Ramp Free Flow<br>Speed (mph) | Capacity<br>(veh/hr) | Time<br>Period | Demand<br>Volume<br>(veh/hr) | Volume to<br>Capacity<br>Ratio |
|---------------------------------|-----------------|-------------------------------|----------------------|----------------|------------------------------|--------------------------------|
| Northbound I-75                 |                 |                               |                      |                |                              |                                |
| Off-Ramp to Gibsonton Drive     | 1               | 45                            | 2100                 | AM             | 511                          | 0.24                           |
| Off-Kamp to dibsoritori Drive   | ļ               | 45                            | 2100                 | PM             | 370                          | 0.18                           |
| On Danier fram Cibra atom Drive | 4               | 45                            | 2100                 | AM             | 2,048                        | 0.98                           |
| On-Ramp from Gibsonton Drive    | I               | 45                            |                      | PM             | 1,483                        | 0.71                           |
| Southbound I-75                 |                 |                               |                      |                |                              |                                |
| Off Dames to Cibanatas Drive    | 1               | 45                            | 2100                 | AM             | 1,483                        | 0.71                           |
| Off-Ramp to Gibsonton Drive     | ļ               | 45                            | 2100                 | PM             | 2,048                        | 0.98                           |
| On Down from Cibronton Drive    | 1               | 45                            | 2100                 | AM             | 370                          | 0.18                           |
| On-Ramp from Gibsonton Drive    |                 | 45                            | 2100                 | PM             | 511                          | 0.24                           |

## 2.5.6 Existing Year (2020) Gibsonton Drive Intersections

An intersection operational analysis was conducted at each of the study intersections within the AOI for the existing year (2020). The results of the existing year (2020) intersection analysis for the AM and PM peak hours are shown in **Table 2.13** and **Table 2.14**. The results of the analysis indicate the Southbound I-75 Ramp terminal and Northbound I-75 Ramp Terminal intersections fail to meet LOS D during the AM peak hour. A visual audit indicated that at the unsignalized eastbound left turn onto I-75 northbound was the primary bottleneck on Gibsonton Drive in the AM peak hour.

Table 2.13: Existing Year (2020) Intersection Vehicle Delay and LOS – AM Peak Hour

| Intersection                  | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                               | EBL      | 10                     | 8                         | 93.0                        | F   |
|                               | EBT      | 819                    | 662                       | 69.2                        | Е   |
|                               | EBR      | 44                     | 36                        | 36.1                        | D   |
|                               | Approach | 873                    | 706                       | 67.8                        | E   |
|                               | WBL      | 227                    | 176                       | 41.0                        | D   |
|                               | WBT      | 882                    | 713                       | 10.1                        | В   |
|                               | WBR      | 81                     | 69                        | 1.0                         | Α   |
|                               | Approach | 1,190                  | 958                       | 15.1                        | В   |
| New East Bay Road             | NBL      | 70                     | 70                        | 34.5                        | С   |
|                               | NBT      | 36                     | 36                        | 35.6                        | D   |
|                               | NBR      | 532                    | 521                       | 13.9                        | В   |
|                               | Approach | 638                    | 627                       | 17.5                        | В   |
|                               | SBL      | 57                     | 56                        | 52.4                        | D   |
|                               | SBT      | 16                     | 15                        | 48.4                        | D   |
|                               | SBR      | 7                      | 7                         | 24.3                        | C   |
|                               | Approach | 80                     | 78                        | 49.2                        | D   |
|                               | Overall  | 2,781                  | 2,369                     | 32.5                        | С   |
|                               | EBT      | 1,299                  | 1,122                     | 68.4                        | E   |
|                               | EBR      | 109                    | 99                        | 16.2                        | В   |
|                               | Approach | 1,408                  | 1,221                     | 64.2                        | Е   |
|                               | WBL      | 261                    | 361                       | 87.3                        | F   |
| Couthbound L75 Dama Tarminal  | WBT      | 716                    | 668                       | 7.0                         | Α   |
| Southbound I-75 Ramp Terminal | Approach | 977                    | 1,029                     | 35.2                        | D   |
|                               | SBL      | 1,009                  | 599                       | 114.6                       | F   |
|                               | SBR      | 474                    | 282                       | 3.4                         | Α   |
|                               | Approach | 1,483                  | 881                       | 79.0                        | Е   |
|                               | Overall  | 3,868                  | 3,131                     | 58.8                        | Е   |
|                               | EBL      | 655                    | 683                       | 225.0                       | F   |
|                               | EBT      | 1,653                  | 1,026                     | 3.0                         | Α   |
|                               | Approach | 2,308                  | 1,709                     | 91.7                        | F   |
|                               | WBT      | 826                    | 883                       | 1.0                         | Α   |
| . N. d.L. 11752 T. d. d.      | WBR      | 1,394                  | 1,295                     | 7.8                         | Α   |
| Northbound I-75 Ramp Terminal | Approach | 2,220                  | 2,178                     | 5.1                         | Α   |
|                               | NBL      | 151                    | 151                       | 6.6                         | Α   |
|                               | NBR      | 360                    | 350                       | 3.4                         | Α   |
|                               | Approach | 511                    | 501                       | 4.4                         | Α   |
| ·                             | Overall  | 5,039                  | 4,388                     | 38.7                        | Е   |

Table 2.13 (Continued): Existing Year (2020) Intersection Vehicle Delay and LOS - AM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 49                     | 29                        | 86.6                        | F   |
|                 | EBT      | 1,837                  | 1,269                     | 3.6                         | Α   |
|                 | EBR      | 127                    | 80                        | 0.4                         | Α   |
|                 | Approach | 2,013                  | 1,378                     | 5.2                         | Α   |
|                 | WBL      | 45                     | 38                        | 88.6                        | F   |
|                 | WBT      | 2,040                  | 2,002                     | 8.6                         | Α   |
|                 | WBR      | 1                      | 0                         | 0.0                         | Α   |
|                 | Approach | 2,086                  | 2,040                     | 10.1                        | В   |
| Fern Hill Drive | NBL      | 96                     | 94                        | 81.5                        | F   |
|                 | NBT      | 2                      | 2                         | 68.8                        | E   |
|                 | NBR      | 74                     | 73                        | 57.4                        | E   |
|                 | Approach | 172                    | 169                       | 71.0                        | E   |
|                 | SBL      | 7                      | 7                         | 81.3                        | F   |
|                 | SBT      | 0                      | 0                         | 0.0                         | Α   |
|                 | SBR      | 83                     | 81                        | 44.9                        | D   |
|                 | Approach | 90                     | 88                        | 47.8                        | D   |
|                 | Overall  | 4,361                  | 3,675                     | 12.0                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that the delay does not meet the LOS target, D

Table 2.14: Existing Year (2020) Intersection Vehicle Delay and LOS - PM Peak Hour

| Intersection      | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                   | EBL      | 12                     | 10                        | 49.2                        | D   |
|                   | EBT      | 812                    | 789                       | 29.8                        | С   |
|                   | EBR      | 175                    | 177                       | 2.9                         | Α   |
|                   | Approach | 999                    | 976                       | 25.1                        | С   |
|                   | WBL      | 826                    | 815                       | 36.6                        | D   |
|                   | WBT      | 617                    | 613                       | 8.1                         | Α   |
|                   | WBR      | 65                     | 64                        | 0.9                         | Α   |
|                   | Approach | 1,508                  | 1,492                     | 23.4                        | С   |
| New East Bay Road | NBL      | 88                     | 78                        | 44.8                        | D   |
|                   | NBT      | 38                     | 37                        | 47.7                        | D   |
|                   | NBR      | 335                    | 312                       | 6.2                         | Α   |
|                   | Approach | 461                    | 427                       | 16.8                        | В   |
|                   | SBL      | 43                     | 42                        | 48.2                        | D   |
|                   | SBT      | 63                     | 61                        | 47.4                        | D   |
|                   | SBR      | 7                      | 7                         | 26.8                        | С   |
|                   | Approach | 113                    | 110                       | 46.4                        | D   |
|                   | Overall  | 3,081                  | 3,005                     | 23.8                        | С   |

Table 2.14 (Continued): Existing Year (2020) Intersection Vehicle Delay and LOS – PM Peak Hour

| Intersection                    | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|---------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                                 | EBT      | 1,039                  | 1,003                     | 51.9                        | D   |
|                                 | EBR      | 151                    | 150                       | 4.2                         | Α   |
|                                 | Approach | 1,190                  | 1,153                     | 45.7                        | D   |
|                                 | WBL      | 360                    | 346                       | 113.7                       | F   |
| Courthbased 1.75 Dama Tarminal  | WBT      | 853                    | 878                       | 17.6                        | В   |
| Southbound I-75 Ramp Terminal — | Approach | 1,213                  | 1,224                     | 44.8                        | D   |
|                                 | SBL      | 1,393                  | 1,325                     | 40.8                        | D   |
|                                 | SBR      | 655                    | 614                       | 3.4                         | Α   |
|                                 | Approach | 2,048                  | 1,939                     | 29.0                        | С   |
|                                 | Overall  | 4,451                  | 4,316                     | 37.9                        | D   |
|                                 | EBL      | 474                    | 408                       | 17.4                        | С   |
|                                 | EBT      | 1,958                  | 1,921                     | 0.01                        | Α   |
|                                 | Approach | 2,432                  | 2,329                     | 3.1                         | Α   |
|                                 | WBT      | 1,104                  | 1,122                     | 0.9                         | Α   |
|                                 | WBR      | 1,009                  | 949                       | 5.3                         | Α   |
| Northbound I-75 Ramp Terminal — | Approach | 2,113                  | 2,071                     | 2.9                         | Α   |
|                                 | NBL      | 109                    | 94                        | 7.0                         | Α   |
|                                 | NBR      | 261                    | 239                       | 3.2                         | Α   |
|                                 | Approach | 370                    | 333                       | 4.3                         | Α   |
|                                 | Overall  | 4,915                  | 4,733                     | 3.1                         | Α   |
|                                 | EBL      | 35                     | 39                        | 104.3                       | F   |
| _                               | EBT      | 2,113                  | 2,060                     | 4.3                         | Α   |
| _                               | EBR      | 71                     | 63                        | 1.5                         | Α   |
| _                               | Approach | 2,219                  | 2,162                     | 6.0                         | Α   |
| _                               | WBL      | 38                     | 36                        | 95.3                        | F   |
| _                               | WBT      | 1,963                  | 1,922                     | 7.9                         | Α   |
| _                               | WBR      | 26                     | 21                        | 2.8                         | Α   |
| _                               | Approach | 2,027                  | 1,979                     | 9.5                         | Α   |
| Fern Hill Drive                 | NBL      | 40                     | 40                        | 89.4                        | F   |
|                                 | NBT      | 2                      | 2                         | 92.7                        | F   |
| _                               | NBR      | 82                     | 80                        | 51.8                        | D   |
| _                               | Approach | 124                    | 122                       | 64.8                        | Е   |
| _                               | SBL      | 8                      | 9                         | 76.4                        | Е   |
| _                               | SBT      | 6                      | 7                         | 82.7                        | F   |
| _                               | SBR      | 110                    | 106                       | 43.5                        |     |
| _                               | Approach | 124                    | 122                       | 48.2                        | D   |
| _                               | Overall  | 4,494                  | 4,385                     | 10.4                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that the delay does not meet the LOS target,  $\mathsf{D}$ 

The available storage lengths and results of the existing year (2020) queue analyses for the AM and PM peak hour periods are shown in **Table 2.15**. The available storage for intersections represents the left or right turn storage bay measured from the stop bar to the taper. The available storage for the off-ramps is measured from the stop bar to the gore point, with adjustment for deceleration length where applicable. There are several locations along Gibsonton Drive at which the queues exceed the available storage lengths. The longest queue occurs for the eastbound through at the northbound I-75 ramp terminal during the AM peak hour. The eastbound left queue at this location also exceeds the available storage length. A visual review of the CORSIM simulation reveals that the eastbound left to northbound I-75 movement backs up and causes spillback through the interchange, which results in queue spillbacks for the eastbound through movements at both ramp terminals during the AM peak hour.

Table 2.15: Existing Year (2020) Intersection Vehicle Queue Lengths

| Cibconton Buis                                |          | Evictina                      | Off-ramp<br>Deceleration<br>Length                   | Avoilable                      | Maximum Vehicle Queue<br>Length (Feet) |                                        |         |                                        |  |
|-----------------------------------------------|----------|-------------------------------|------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------|---------|----------------------------------------|--|
| Gibsonton Drive<br>Signalized<br>Intersection | Movement | Existing<br>Storage<br>(Feet) | adjustment<br>required<br>(Yes/No - #<br>of<br>Feet) | Available<br>Storage<br>(Feet) | AM Peak                                | Queue<br>extend<br>to I-75<br>mainline | PM Peak | Queue<br>extend<br>to I-75<br>mainline |  |
|                                               | EBL      | 190                           | No                                                   | 190                            | 50                                     | N/A                                    | 50      | N/A                                    |  |
|                                               | EBT      | 1100                          | No                                                   | 1100                           | 1,250                                  | N/A                                    | 375     | N/A                                    |  |
|                                               | EBR      | 250                           | No                                                   | 250                            | 100                                    | N/A                                    | 100     | N/A                                    |  |
|                                               | WBL      | 530                           | No                                                   | 530                            | 225                                    | N/A                                    | 500     | N/A                                    |  |
| New East Bay<br>Road                          | WBT      | 730                           | No                                                   | 730                            | 375                                    | N/A                                    | 300     | N/A                                    |  |
|                                               | WBR      | 730                           | No                                                   | 730                            | 75                                     | N/A                                    | 50      | N/A                                    |  |
|                                               | NBTL     | 410                           | No                                                   | 410                            | 175                                    | N/A                                    | 200     | N/A                                    |  |
|                                               | NBR      | 390                           | No                                                   | 390                            | 300                                    | N/A                                    | 125     | N/A                                    |  |
|                                               | SBLTR    | 430                           | No                                                   | 430                            | 175                                    | N/A                                    | 200     | N/A                                    |  |
| Southbound I-75                               | EBT      | 730                           | No                                                   | 730                            | 1,600                                  | N/A                                    | 800     | N/A                                    |  |
|                                               | EBR      | 520                           | No                                                   | 520                            | 50                                     | N/A                                    | 25      | N/A                                    |  |
|                                               | WBL      | 640                           | No                                                   | 640                            | 650                                    | N/A                                    | 700     | N/A                                    |  |
| Ramp Terminal                                 | WBT      | 1950                          | No                                                   | 1950                           | 225                                    | N/A                                    | 450     | N/A                                    |  |
|                                               | SBL      | 1810                          | Yes (440')                                           | 1370                           | 1,650                                  | Yes                                    | 1,300   | No                                     |  |
|                                               | SBR      | 1860                          | Yes (440')                                           | 1420                           | 575                                    | No                                     | 300     | No                                     |  |
|                                               | EBL      | 640                           | No                                                   | 640                            | 875                                    | N/A                                    | 550     | N/A                                    |  |
|                                               | EBT      | 1950                          | No                                                   | 1950                           | 2,375                                  | N/A                                    | 100     | N/A                                    |  |
| Northbound I-75                               | WBT      | 730                           | No                                                   | 730                            | 25                                     | N/A                                    | 50      | N/A                                    |  |
| Ramp Terminal                                 | WBR      | 730                           | No                                                   | 730                            | 500                                    | N/A                                    | 75      | N/A                                    |  |
|                                               | NBL      | 375                           | No                                                   | 375                            | 125                                    | No                                     | 100     | No                                     |  |
|                                               | NBR      | 2600                          | Yes (440')                                           | 2160                           | 25                                     | No                                     | 25      | No                                     |  |
|                                               | EBL      | 250                           | No                                                   | 250                            | 100                                    | N/A                                    | 275     | N/A                                    |  |
|                                               | EBT      | 730                           | No                                                   | 730                            | 325                                    | N/A                                    | 650     | N/A                                    |  |
|                                               | EBR      | 215                           | No                                                   | 215                            | 50                                     | N/A                                    | 175     | N/A                                    |  |
| Fern Hill Drive                               | WBL      | 330                           | No                                                   | 330                            | 150                                    | N/A                                    | 175     | N/A                                    |  |
|                                               | WBTR     | 1,170                         | No                                                   | 1,170                          | 825                                    | N/A                                    | 725     | N/A                                    |  |
|                                               | NBLTR    | 580                           | No                                                   | 580                            | 350                                    | N/A                                    | 250     | N/A                                    |  |
|                                               | SBLTR    | 410                           | No                                                   | 410                            | 225                                    | N/A                                    | 250     | N/A                                    |  |

#### Note:

<sup>1.</sup> The available storage lengths for through lanes on Gibsonton Drive are the roadway segment distance between upstream and downstream intersections.

<sup>2.</sup> Where vehicle queues exceed the length of the CORSIM link, queue lengths from upstream links are added.

<sup>3.</sup> Red highlight indicates that maximum vehicle queue length exceeds available storage length

# 2.5.7 Existing Year (2020) Gibsonton Drive Roadway Segments

Segment analysis was conducted along Gibsonton Drive for the existing year (2020) AM and PM peak hour directional volume and the results are provided in **Table 2.16**. This analysis was based on the speed thresholds defined in Exhibit 16-3 of the HCM, 6<sup>th</sup> Edition. The result of the analysis indicates that Gibsonton Drive fails to operate at the LOS target D on the eastbound segment from west of New East Bay Road to East Bay Road (in the AM and PM peak hours), the eastbound segment from New East Bay Road to the Southbound I-75 Ramp Terminal (in the AM peak hour), the eastbound segment from the Southbound I-75 Ramp Terminal to the Northbound I-75 Ramp Terminal (in the AM peak hour), and the westbound segment from east of Fern Hill Drive to Fern Hill Drive (in the AM and PM peak hours). On average, both directions of Gibsonton Drive operate at LOS C or D based on the speed threshold.

Table 2.16: Existing Year (2020) Gibsonton Drive Arterial Speed and LOS

| Gibsonton Drive Arterial Roadway Segment |                               | Free                   | AM PEAK        |      | PM PEAK        |      |
|------------------------------------------|-------------------------------|------------------------|----------------|------|----------------|------|
| From                                     | То                            | Flow<br>Speed<br>(mph) | Speed<br>(mph) | LOS* | Speed<br>(mph) | LOS* |
| Eastbound                                |                               |                        |                |      |                |      |
| West of New East Bay Road                | New East Bay Road             | 45                     | 10             | F    | 16             | Е    |
| New East Bay Road                        | Southbound I-75 Ramp Terminal | 45                     | 9              | F    | 25             | С    |
| Southbound I-75 Ramp Terminal            | Northbound I-75 Ramp Terminal | 45                     | 14             | E    | 29             | С    |
| Northbound I-75 Ramp Terminal            | Fern Hill Drive               | 45                     | 30             | В    | 28             | С    |
| Fern Hill Drive                          | East of Fern Hill Drive       | 45                     | 31             | В    | 29             | С    |
| Total                                    |                               |                        | 21             | D    | 28             | С    |
| Westbound                                |                               |                        |                |      |                |      |
| East of Fern Hill Drive                  | Fern Hill Drive               | 45                     | 17             | Е    | 18             | E    |
| Fern Hill Drive                          | Northbound I-75 Ramp Terminal | 45                     | 26             | C    | 31             | В    |
| Northbound I-75 Ramp Terminal            | Southbound I-75 Ramp Terminal | 45                     | 31             | В    | 30             | В    |
| Southbound I-75 Ramp Terminal            | New East Bay Road             | 45                     | 20             | D    | 20             | D    |
| New East Bay Road                        | West of New East Bay Road     | 45                     | 38             | Α    | 38             | Α    |
| Total                                    |                               |                        | 25             | С    | 26             | С    |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made. LOS is determined from Exhibit 16-3 of the HCM, 6<sup>th</sup>

Note: Red highlight indicates that the speed does not meet the LOS target, D

# 3.0 Future Travel Demand

## 3.1 Future Land-Use

A review of the land-use maps obtained from the Hillsborough County Planning Commission revealed that future land use is anticipated to remain predominantly comprised of light/heavy commercial, and single family/mobile homes. **Figure 3.1** shows the future land use of the area surrounding the I-75 and Gibsonton Drive interchange.

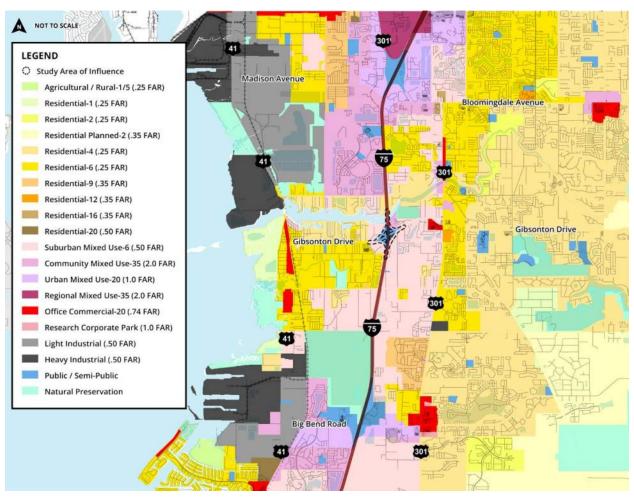



Figure 3.1: Future Land Use Map

# 3.2 Trend Analysis

#### 3.2.1 BEBR Growth Trends

Data was gathered for the Bureau of Economic and Business Research's (BEBR) 'Projections of Florida Population by County, 2020-2045' and is summarized in **Table 3.1**. BEBR population forecasts provide a useful metric in measuring growth trends within counties by providing low, medium, and high forecast rates. With a design year of 2045, and the anticipated development within the study area, BEBR data indicates that medium to high population growth should range from 1.3 percent to 3.5 percent per year.

2040 2020 2025 2030 2035 2045 1,478,759 Pop Growth Pop Growth Pop Growth Pop Growth Pop Growth Low 1,480,500 0.02% 1,533,000 0.4% 1,567,300 0.4% 1,591,700 0.4% 1,605,800 0.3% Medium 1,614,200 1,889,200 1,958,300 1.3% 1.8% 1,723,500 1.7% 1,811,800 1.5% 1.4%

2,054,300

2.6%

2.198.900

2.4%

2,336,700

2.3%

Table 3.1: Hillsborough County BEBR Population Forecasts 2020 to 2045

#### 3.2.2 Historical Count Trends

1,734,300

3.5%

1,905,000

2.9%

High

Historical count data was obtained from the FDOT FTO count stations located within or near the study area and growth rates were plotted from 2015 to 2019 and can be found in **Table 3.2**. The average weighted annual historical growth rate for the study area is 0.3 percent. Historical Count data and graphs can be found in **Appendix D**.

| Count ID | Location                                                   | 2015    | 2016    | 2017    | 2018    | 2019    | Growth | $R^2$ |
|----------|------------------------------------------------------------|---------|---------|---------|---------|---------|--------|-------|
| 109165   | Gibsonton Drive, East of S<br>US 41 Highway                | 11,700  | 11,900  | 12,100  | 12,500  | 13,000  | 2.8%   | 0.95  |
| 100146   | I-75, North of Gibsonton Drive                             | 143,000 | 147,500 | 144,500 | 143,500 | 144,500 | 0.3%   | 0.01  |
| 140030   | I-75, North of Big Bend Road<br>(South of Gibsonton Drive) | 123,500 | 120,500 | 117,500 | 116,500 | 124,000 | 0.1%   | 0.02  |
|          | Total                                                      | 278,200 | 279,900 | 274,100 | 272,500 | 281,500 | 0.3%   | 0.001 |

Table 3.2: Historical FTO Growth Trends

# 3.3 Future Volume Development

The future demand volumes for this study were developed with an emphasis on minimizing deviation from the recommended I-75 PD&E Study future project traffic volumes and ensuring future volumes reflect reasonable growth rates within the study area. While reviewing 2045 AADTs and DDHVs from the previous I-75 PD&E Study, this study found that the growth rates are in line with the BEBR and FDOT 2019 FTO count growth rates, as summarized in **Table 3.3**.

For consistency with the process to develop the existing year (2020) AADTs, interpolation was used to calculate opening year (2025) AADTs and compared to the I-75 PD&E Study. The interpolation results match with the 2025 AADTs in the I-75 PD&E Study and are shown in **Table 3.3** and depicted in **Figure 3.2**.

Opening year (2025) AADTs for the Build Alternative are the same as the No-Build except for the distribution of traffic on I-75 northbound on-ramps. Unlike the No-Build Alternative where the Gibsonton Drive eastbound left turn traffic merges with the westbound right to access northbound I-75, the Build Alternative channels the Gibsonton Drive eastbound and westbound traffic turning to northbound I-75 with two separated ramps. The Build Alternative opening year (2025) AADTs are depicted in **Figure 3.3**.

Table 3.3: Future Year AADT Forecast

| Sogmont                                              | I-75 PD&E Study |         | Forecasted Traffic |         | Annual Growth Rate | Annual Growth    | BEBR Growth      |              |
|------------------------------------------------------|-----------------|---------|--------------------|---------|--------------------|------------------|------------------|--------------|
| Segment                                              | 2017            | 2045    | 2020               | 2025    | 2045               | (PD&E 2017-2045) | Rate (2020-2045) | Rate         |
| Gibsonton Drive                                      |                 |         |                    |         |                    |                  |                  |              |
| West of New East Bay Road                            | 15,000          | 27,300  | 17,400             | 21,400  | 37,300             | 2.9%             | 4.6%             |              |
| Between New East Bay Road and I-75 SB Ramp Terminal  | 28,300          | 42,900  | 30,900             | 35,300  | 52,900             | 1.8%             | 2.8%             |              |
| Between I-75 SB and I-75 NB Ramp Terminals           | 35,500          | 50,100  | 38,100             | 42,500  | 60,100             | 1.5%             | 2.3%             |              |
| Between I-75 NB Ramp Terminal and Fern Hill Drive    | 46,500          | 70,700  | 49,100             | 53,400  | 70,700             | 1.9%             | 1.8%             |              |
| East of Fern Hill Drive                              | 44,600          | 68,600  | 47,200             | 51,500  | 68,600             | 1.9%             | 1.8%             |              |
| Cross Streets                                        |                 |         |                    |         |                    |                  |                  |              |
| Old Gibsonton Drive (west), North of Gibsonton Drive | 2,100           | 2,600   | 2,200              | 2,200   | 2,600              | 0.9%             | 0.7%             |              |
| New East Bay Road, South of Gibsonton Drive          | 11,900          | 14,800  | 12,200             | 12,700  | 14,800             | 0.9%             | 0.9%             |              |
| Old Gibsonton Drive (east), North of Gibsonton Drive | 2,300           | 3,000   | 2,400              | 2,500   | 3,000              | 1.1%             | 1.0%             | 0.3% to 2.3% |
| Fern Hill Drive, South of Gibsonton Drive            | 3,200           | 4,100   | 3,300              | 3,500   | 4,100              | 1.0%             | 1.0%             |              |
| I-75 Ramps                                           |                 |         |                    |         |                    |                  |                  |              |
| I-75 SB Off-Ramp                                     | 18,000          | 32,200  | 19,500             | 22,100  | 32,200             | 2.8%             | 2.6%             |              |
| I-75 NB Off-Ramp                                     | 4,300           | 5,300   | 4,400              | 4,600   | 5,300              | 0.8%             | 0.8%             |              |
| I-75 SB On-Ramp                                      | 5,200           | 6,800   | 5,400              | 5,700   | 6,800              | 1.1%             | 1.0%             |              |
| I-75 NB On-Ramp                                      | 18,500          | 29,700  | 19,700             | 21,700  | 29,700             | 2.2%             | 2.0%             |              |
| I-75 Mainline                                        |                 |         |                    |         |                    |                  |                  |              |
| I-75 Mainline, North of Gibsonton Drive              | 147,500         | 261,000 | 159,600            | 179,700 | 261,000            | 2.7%             | 2.5%             |              |
| I-75 Mainline, South of Gibsonton Drive              | 120,500         | 211,200 | 130,200            | 146,200 | 211,200            | 2.7%             | 2.5%             |              |

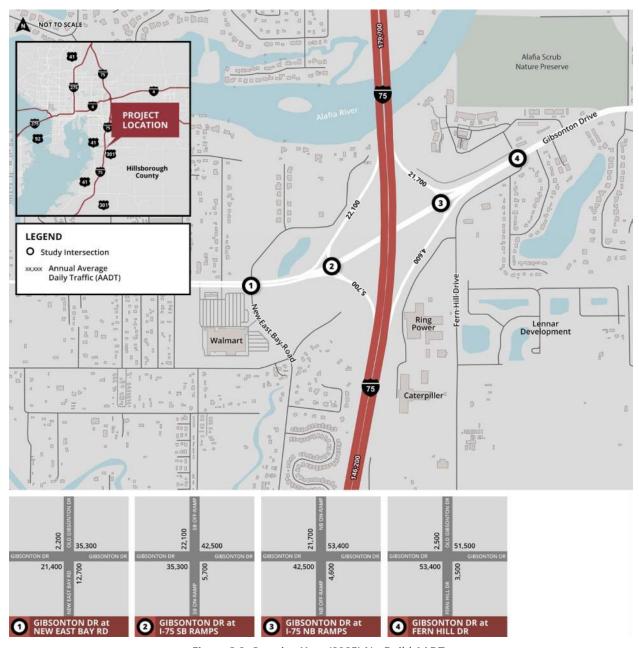



Figure 3.2: Opening Year (2025) No-Build AADTs

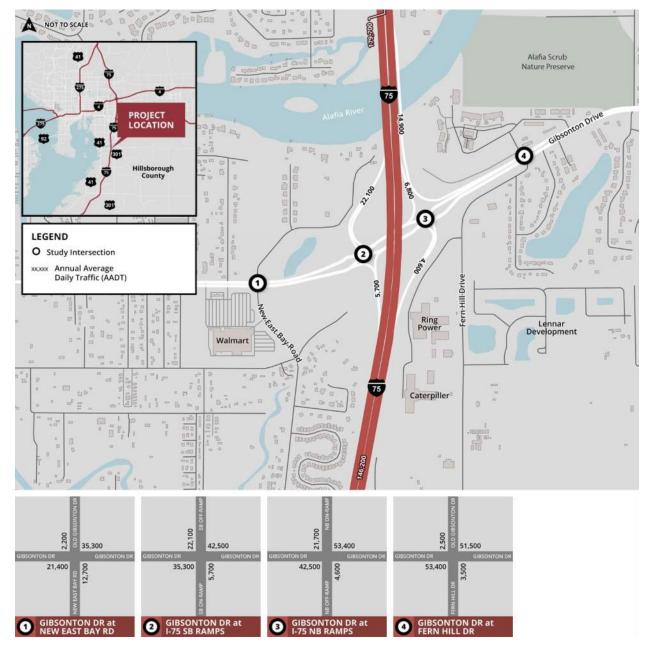



Figure 3.3: Opening Year (2025) Build AADTs

For consistency with existing year (2020) DDHV development, linear interpolation between the 2017 and 2045 design traffic data sets was used to yield the opening year (2025) DDHVs. The opening year (2025) DDHVs match with the 2025 traffic in I-75 PD&E Study and can be found in **Figure 3.4**.

DDHVs for the Build Alternative are the same as the No-Build Alternative except for traffic on I-75 northbound on-ramps which includes two separated ramps from Gibsonton Drive eastbound and westbound to I-75 northbound as it is shown in **Figure 3.5.** 

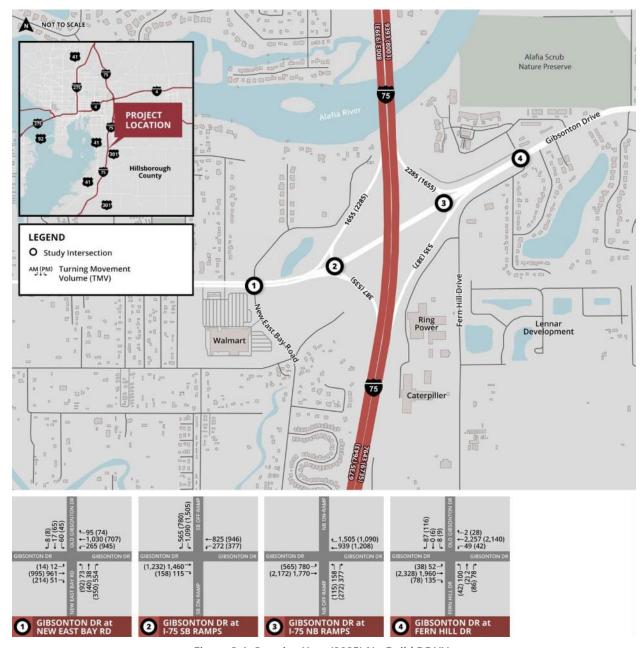



Figure 3.4: Opening Year (2025) No-Build DDHVs

January, 2023

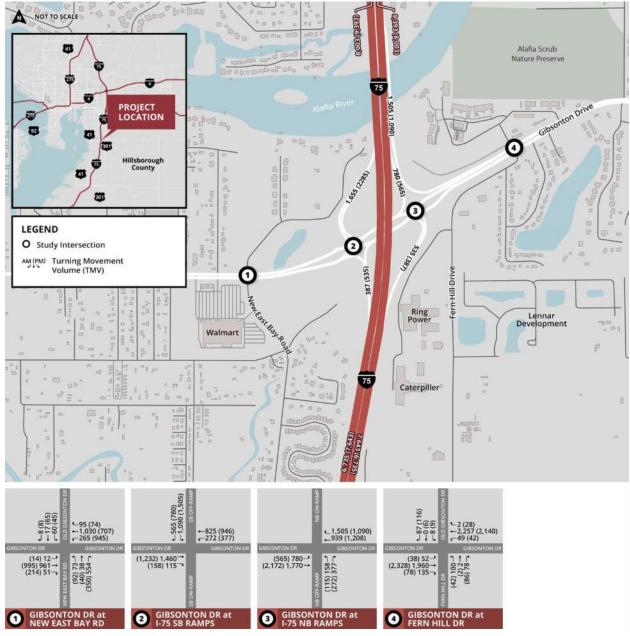



Figure 3.5: Opening Year (2025) Build DDHVs

Based upon this analysis, the design year (2045) AADTs from the I-75 PD&E Study were adjusted as previously discussed and can be found in **Table 3.3** and **Figure 3.6**. AADTs on express lanes along I-75 (shown in blue on **Figure 3.6** and **Figure 3.7**) are taken directly from the I-75 PD&E Study.

AADTs for the Build Alternative are the same as the No-Build Alternative except for traffic on I-75 northbound on-ramps. In the No-Build Alternative, the Gibsonton Drive eastbound left turning traffic merges with westbound right turning traffic to access northbound I-75, whereas in the Build Alternative, two separated ramps channel the Gibsonton Drive eastbound and westbound traffic turning north to I-75. The Build Alternative design year (2045) AADTs are depicted in **Figure 3.7**.

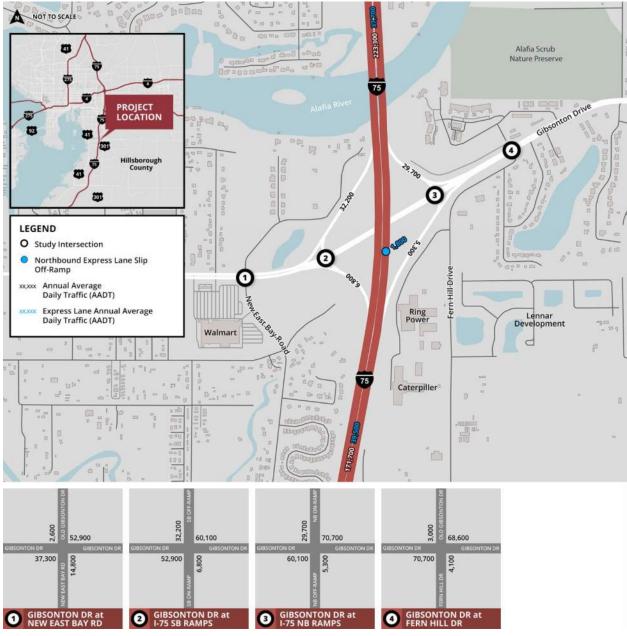



Figure 3.6: Design Year (2045) No-Build AADTs

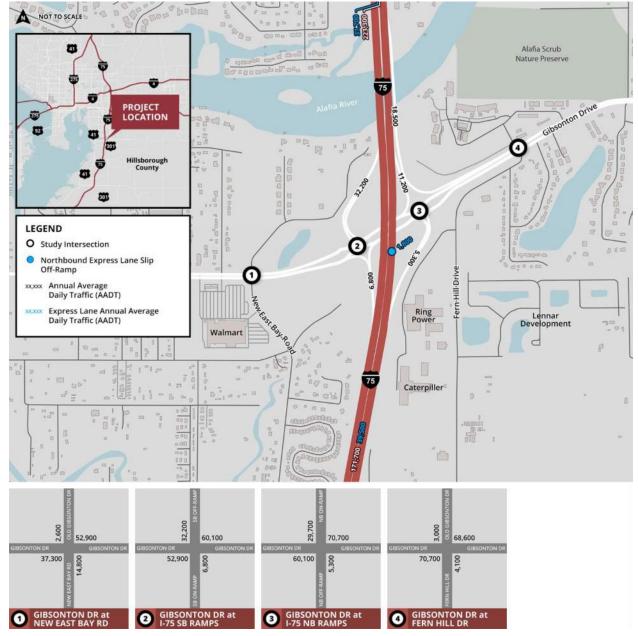



Figure 3.7: Design Year (2045) Build AADTs

Design year (2045) DDHVs were taken directly from the I-75 PD&E Study. The design year (2045) DDHVs can be found in **Figure 3.8**.

DDHVs for the Build Alternative are the same as the No-Build Alternative except for traffic on I-75 northbound on-ramps which includes two separated ramps from Gibsonton Drive eastbound and westbound to I-75 northbound, as shown in **Figure 3.9**. DDHVs on express lanes along I-75 are taken directly from the I-75 PD&E Study.

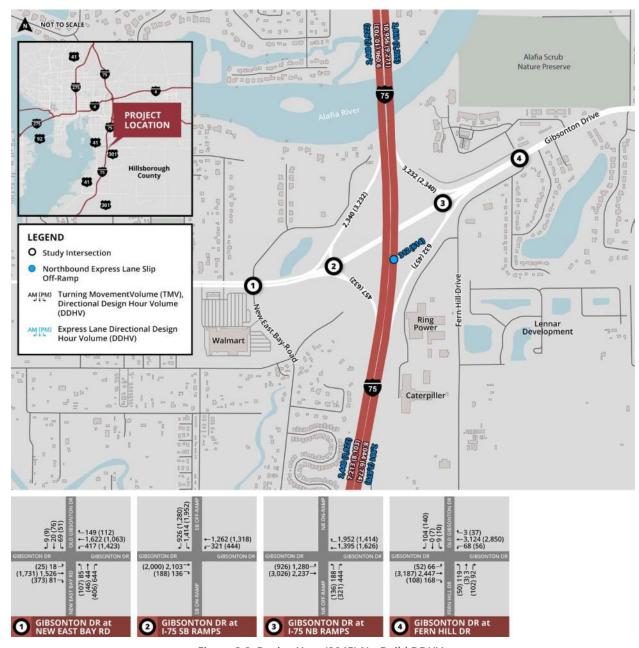



Figure 3.8: Design Year (2045) No-Build DDHVs

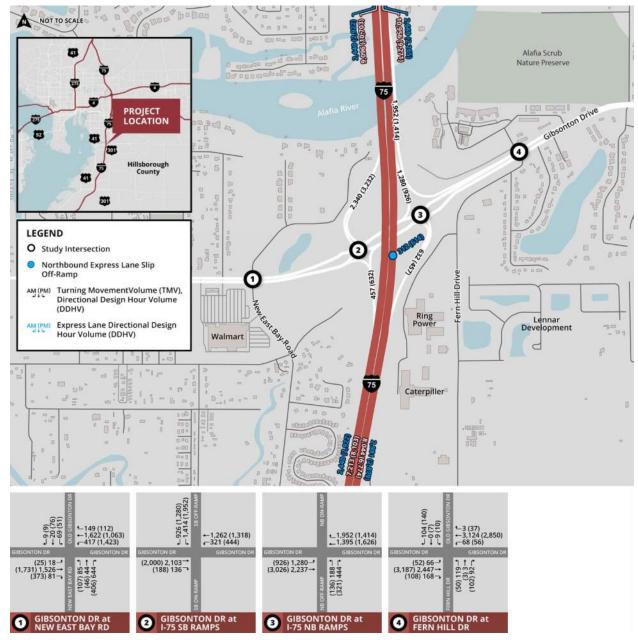



Figure 3.9: Design Year (2045) Build DDHVs

# 4.0 Alternatives Considered

## 4.1 No-Build Alternative


The No-Build Alternative maintains the current I-75 and Gibsonton Drive Diamond Interchange configuration, existing year (2020) lane configuration and traffic control at the study intersections within the AOI.

Under the No-Build Alternative, additional variations from the existing year (2020) conditions have been included based on two committed transportation improvement projects:

- The first committed project is a Hillsborough County project (managed by FDOT) and consists of enhancing the intersection geometry at Gibsonton Drive and Fern Hill Drive/ Old Gibsonton Drive, (WPI Segment No.: 439772-1). The primary proposed improvements include the widening of Fern Hill Drive to provide three exclusive left turn lanes, one through and one exclusive right turn lane at the south leg of the intersection for both the opening year (2025) and design year (2045).
- The second committed project includes the construction of 12-foot tolled express lanes on I-75 from Moccasin Wallow Road to S of US 301 for the design year (2045). It is assumed that the express lanes project will not be finished by the opening year (2025). The I-75 express lanes are being designed as part of the Tampa Bay Next project (TBNext) and managed by FDOT (WPI Segment No.: 419235-2).

Note: The No-Build Alternatives for both 2025 and 2045 do not include the widening of the Gibsonton Drive between I-75 and US 301 from four to six lanes.

The lane geometry and intersection control for the No-Build Alternative can be found in **Figure 4.1** and **Figure 4.2**.



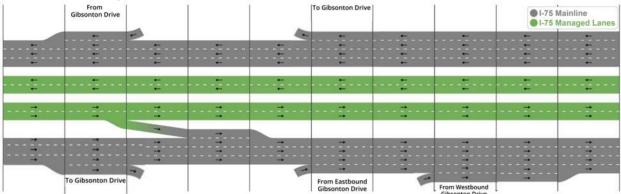



Figure 4.2: No-Build 2045 Alternative I-75 Lane Geometry

#### 4.2 Build Alternative

Evaluation of measures leading to improvement of traffic flows through non-capacity improvements include but are not limited to Intelligent Traffic Systems (ITS) deployment, intersection optimization and enhanced multimodal accommodations for all roadway users. These types of improvements involve optimizing the use of existing facilities. Transportation Systems Management and Operations (TSM&O) improvements would not adequately accommodate forecasted traffic volumes within the I-75/Gibsonton Drive interchange area. Thus, a TSM&O Alternative is not considered a viable alternative for this IMR.

To address the existing safety and operational concerns at the Gibsonton Interchange, signalization of the northbound ramp terminal was the main priority. Upon examining forecasts and origin-destination patterns within the AOI, it was determined that a Diverging Diamond Interchange (DDI) would be the most logical interchange configuration to implement for the future development plans surrounding Gibsonton Drive Interchange area. Additionally, including mainline improvements to aid in the mainline challenges and capacity issues associated with the forecasted demand along I-75 as well as supporting the future managed lanes that were proposed for the area was considered. A wide variety of interchange configurations under the DDI and diverging points around the DDI were considered and ruled out using a variety of factors such as safety, construction cost, and general operational considerations. A more detailed discussion of these alternatives can be found in **Appendix H**.

The Build Alternative consists of reconstructing the current Diamond Interchange to a Diverging Diamond Interchange (DDI). Additional primary improvements include:

- Construction of a new 1,500-foot-long deceleration lane on I-75 northbound that becomes an exit lane to Gibsonton Drive, allowing the existing single lane exit to be converted to a twolane exit. The two-lane off-ramp widens to four lanes, providing dual left and right turn lanes onto Gibsonton Drive.
- Reconfiguring the Gibsonton Drive access to I-75 northbound by separating the eastbound traffic from the westbound traffic. Eastbound Gibsonton Drive traffic has dual left turn lanes onto the northbound I-75 on-ramp which merges in a single lane on-ramp and enters I-75 northbound as an add lane south of the Alafia River. Westbound Gibsonton Drive traffic has dual right turn lanes onto the northbound I-75 on-ramp carried by a new bridge over the Alafia River and merges with I-75 north of the Riverview Drive overpass.
- Providing additional capacity for the Gibsonton Drive westbound to I-75 northbound on-ramp by extending the existing lane and constructing an additional lane, prior to the Gibsonton Drive and Fern Hill Drive intersection, resulting in three westbound through lanes, one left turn lane to Fern Hill Drive, and two auxiliary lanes that become the dual right turn lanes onto I-75 northbound.
- Converting the existing I-75 southbound off-ramp from a single exit to a two-lane exit. The two-lane exit widens to six-lanes, providing three right turn lane and three left turn lanes.
- Reconfiguring the I-75 southbound on-ramp to merge exclusive turn lanes from eastbound and westbound Gibsonton Drive.
- Widening Gibsonton Drive from a four-lane divided arterial typical section to a six-lane divided arterial between New East Bay Road and east of Fern Hill Drive. This will match the six-lane typical from I-75 to US 301 found in the Hillsborough County 2045 Long Range Transportation Plan. The County Capital Improvement Program (CIP) includes the Gibsonton Drive at Fern Hill Drive Intersection Improvements (CIP#: 69600311).
- Providing a third eastbound Gibsonton Drive thru lane at the New East Bay Road intersection.

- Installing new traffic signals at the two crossovers of the DDI.
- Modifying the traffic signal timings at New East Bay Road and Fern Hill Drive and coordinating with the new traffic signals at the DDI crossovers. This includes a phased process for the signal timings. During the opening year (2025), the cycle lengths at New East Bay Road and Fern Hill Drive are set to half the cycle length (75 seconds) of the DDI signals. During the design year (2045) this timing no longer works as the network reaches saturation and so the cycle length of 150 seconds (to equal the DDI signals) is more appropriate and services the design year (2045) vehicles more efficiently with less flow breakdown, particularly on the westbound approach to New East Bay Road.
- Providing pedestrian accommodations including 6-foot-wide sidewalks and high emphasis crosswalks on both sides of Gibsonton Drive between New East Bay Road and Fern Hill Drive. A single 10-foot-wide sidewalk is provided in the median within the DDI limits while ensuring continuity through the corridor.
- Providing bicyclist accommodations including dedicated bicycle lanes along Gibsonton Drive eastbound and westbound between New East Bay Road and Fern Hill Drive. Bicycle bailouts have been proposed approaching the DDI crossovers to provide an option for the bike to utilize the 10-foot-wide sidewalk.
- Similar to No-Build networks, the 2045 build network includes the 12-foot tolled express lanes on I-75 from Moccasin Wallow Road to S of US 301, with the assumption that it will not be constructed by the opening year (2025).

These improvements are anticipated to improve safety and provide the necessary capacity within the study area to allow for forecasted growth and development.

All proposed improvements are to be constructed within the existing right-of-way constraints. The lane geometry and intersection control for the Build Alternative can be found in **Figure 4.3** and **Figure 4.4**.

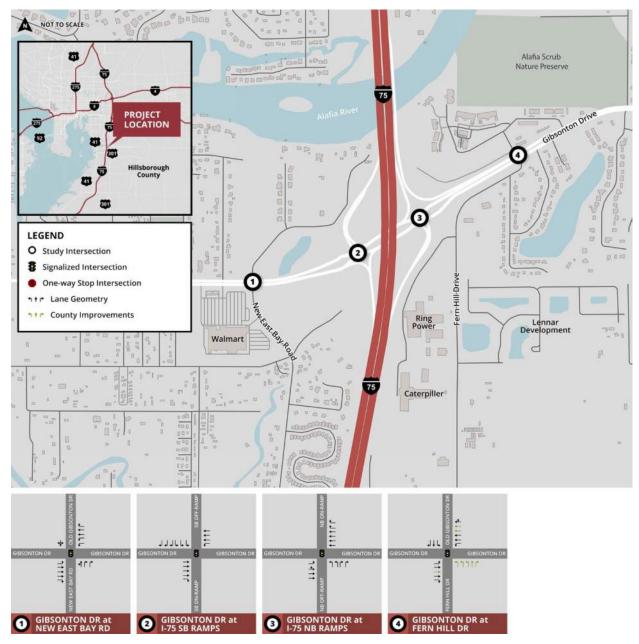



Figure 4.3: Build Alternative Intersection Geometries and Traffic Control

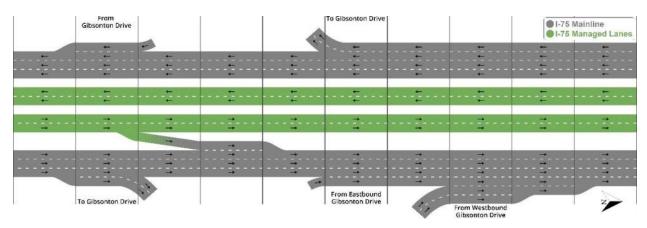



Figure 4.4: Build 2045 Alternative I-75 Lane Geometry

# 5.0 Future Traffic Operational Analysis

A summary of the microsimulation analysis results is detailed in this section to evaluate the future traffic operations of the I-75 at Gibsonton Drive interchange with and without the proposed improvements. To account for the stochastic nature of microsimulation modeling, ten iterations of CORSIM microsimulation were averaged. The key MOEs are summarized for mainline basic segments, weaving sections, ramp merge and diverge areas; arterial roadway segments; and intersections at ramp terminals and cross-streets. CORSIM MOEs are utilized for reference, and the equivalent HCM LOS are used to determine the need for roadway geometric and traffic control improvements within the AOI.

#### 5.1 Opening Year (2025) Traffic Operational Analysis

The anticipated opening year for the proposed interchange improvements at the I-75 at Gibsonton Drive interchange is 2025. To evaluate the No-Build and Build Alternatives, analysis of the future traffic operations was conducted. The following sections summarize the MOEs for these alternatives.

#### 5.1.1 No-Build Alternative

The No-Build Alternative retains existing roadway geometric and traffic control features within the AOI of the interchange and matches the No-Build conditions in the I-75 PD&E study. This section provides a summary of the operational results for the No-Build Alternative; full results are available in **Appendix I**.

The CORSIM microsimulation results of the evaluation of the I-75 basic freeway segments and ramp merge/diverge areas for the AM and PM peak hour periods are shown in **Table 5.1** and **Figure 5.1**.

As congestion worsens on southbound I-75, particularly as the I-75 southbound off-ramp faces more congestion, the number of vehicles that can be serviced is reduced in the AM peak hour. During the AM peak hour, southbound I-75 Gibsonton Drive Off-Ramp to Gibsonton Drive On-ramp, southbound I-75 On-ramp from Gibsonton Drive, and southbound I-75 south of Gibsonton Drive see a slight reduction in density. However, these are due to upstream bottlenecks.

Table 5.1 Opening Year (2025) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicle Density and LOS – No-Build Alternative

| Basic Freeway Segment and<br>Ramp Merge/Diverge Areas  | Туре             | No. of<br>Lanes | Time<br>Period | Demand<br>Volumes<br>(vph) | Simulated<br>Volume<br>(vph) | Speed<br>(mph) | Estimated<br>Density<br>(pc/mi/ln) | LOS* |
|--------------------------------------------------------|------------------|-----------------|----------------|----------------------------|------------------------------|----------------|------------------------------------|------|
| Northbound I-75                                        |                  |                 |                |                            |                              |                |                                    |      |
| South of Gibsonton Drive                               | Basic            | 3               | AM             | 7,643                      | 6,672                        | 64             | 33.4                               | D    |
| South of dibsoritori Drive                             | Freeway          | 3               | PM             | 6,735                      | 6,569                        | 64             | 32.8                               | D    |
| Off-Ramp to Gibsonton Drive                            | Ramp             | 3               | AM             | 7,643                      | 6,667                        | 58             | 33.0                               | D    |
|                                                        | Diverge          | 3               | PM             | 6,735                      | 6,569                        | 59             | 32.1                               | D    |
| Gibsonton Drive Off-Ramp to<br>Gibsonton Drive On-Ramp | Basic            | 3               | AM             | 7,108                      | 6,197                        | 64             | 31.3                               | D    |
|                                                        | Freeway          | 3               | PM             | 6,348                      | 6,173                        | 64             | 31.0                               | D    |
| On-Ramp from Gibsonton<br>Drive                        | Ramp             | 4               | AM             | 9,393                      | 8,079                        | 61             | 32.0                               | D    |
|                                                        | Merge            |                 | PM             | 8,003                      | 7,647                        | 61             | 30.1                               | D    |
| North of Gibsonton Drive                               | Basic<br>Freeway | 4               | AM             | 9,393                      | 8,082                        | 64             | 29.0                               | D    |
| North of dibsoritori Drive                             |                  | 4               | PM             | 8,003                      | 7,646                        | 65             | 27.3                               | D    |
| Southbound I-75                                        |                  |                 |                |                            |                              |                |                                    |      |
| North of Gibsonton Drive                               | Basic            | 4               | AM             | 8,003                      | 4,965                        | 13             | 98.7                               | F    |
| North of dibsortion brive                              | Freeway          |                 | PM             | 9,393                      | 7,936                        | 21             | 97.9                               | F    |
| Off-Ramp to Gibsonton Drive                            | Ramp             | 4               | AM             | 8,003                      | 4,614                        | 32             | 52.5                               | F    |
| On-Kamp to dibsortion brive                            | Diverge          |                 | PM             | 9,393                      | 7,816                        | 42             | 44.8                               | Е    |
| Gibsonton Drive Off-Ramp to                            | Basic            | 3               | AM             | 6,348                      | 3,723                        | 65             | 18.3                               | C    |
| Gibsonton Drive On-Ramp                                | Freeway          | J               | PM             | 7,108                      | 5,942                        | 63             | 30.4                               | D    |
| On-Ramp from Gibsonton                                 | Ramp             | 3               | AM             | 6,735                      | 4,221                        | 58             | 18.9                               | С    |
| Drive                                                  | Merge            | 3               | PM             | 7,643                      | 6,466                        | 54             | 31.2                               | D    |
| South of Gibsonton Drive                               | Basic            | 3               | AM             | 6,735                      | 4,259                        | 65             | 20.8                               | C    |
|                                                        | Freeway          |                 | PM             | 7,643                      | 6,462                        | 64             | 32.6                               | D    |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

|                                                                 | Southbound I-75 Mainline |                      |       |                    |              |  |  |  |  |  |
|-----------------------------------------------------------------|--------------------------|----------------------|-------|--------------------|--------------|--|--|--|--|--|
| Speed (mph) (pc/mi/ln) >=63 <=26 <63-57 <57-45 >35 - 45 <45 >45 |                          | From Gibsonton Drive |       | To Gibsonton Drive | <del>.</del> |  |  |  |  |  |
| AM Peak Hour                                                    |                          |                      |       |                    |              |  |  |  |  |  |
| Demand (vph)                                                    | 6,735                    | 6,735                | 6,348 | 8,003              | 8,003        |  |  |  |  |  |
| Simulated (vph)                                                 | 4,259                    | 4,221                | 3,723 | 4,614              | 4,965        |  |  |  |  |  |
| Percent Processed                                               | 63%                      | 63%                  | 59%   | 58%                | 62%          |  |  |  |  |  |
| Speed (mph)                                                     | 65                       | 58                   | 65    | 32                 | 13           |  |  |  |  |  |
| Estimated Density (pc/mi/ln)                                    | 20.8                     | 18.9                 | 18.3  | 52.5               | 98.7         |  |  |  |  |  |
| PM Peak Hour                                                    |                          |                      |       |                    |              |  |  |  |  |  |
| Demand (vph)                                                    | 7,643                    | 7,643                | 7,108 | 9,393              | 9,393        |  |  |  |  |  |
| Simulated (vph)                                                 | 6,462                    | 6,466                | 5,942 | 7,816              | 7,936        |  |  |  |  |  |
| Percent Processed                                               | 85%                      | 85%                  | 84%   | 83%                | 84%          |  |  |  |  |  |
| Speed (mph)                                                     | 64                       | 54                   | 63    | 42                 | 21           |  |  |  |  |  |
| Estimated Density (pc/mi/ln)                                    | 32.6                     | 31.2                 | 30.4  | 44.8               | 97.9         |  |  |  |  |  |

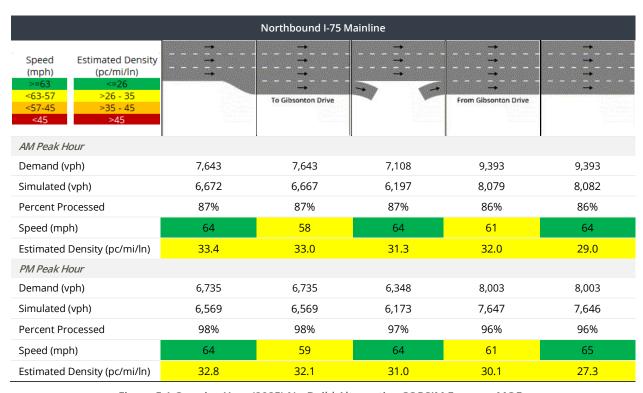



Figure 5.1 Opening Year (2025) No-Build Alternative CORSIM Freeway MOEs

Volume-to-capacity ratios for each ramp of the I-75 interchange at Gibsonton Drive in the AM and PM time periods are summarized in **Table 5.2**. The results of this capacity check indicate that the on-ramp to northbound I-75 during the AM peak hour and the off-ramp to Gibsonton Drive from southbound I-75 during the PM peak hour exceed the capacity of the ramp.

Table 5.2: Opening Year (2025) I-75 Ramps Capacity Check - No-Build Alternative

| I-75 On and Off Ramp Location   | No. of<br>Lanes | Ramp Free Flow<br>Speed (mph) | Capacity<br>(veh/hr) | Time<br>Period | Demand<br>Volume<br>(veh/hr) | Volume to<br>Capacity Ratio |
|---------------------------------|-----------------|-------------------------------|----------------------|----------------|------------------------------|-----------------------------|
| Northbound I-75                 |                 |                               |                      |                |                              |                             |
| Off-Ramp to Gibsonton Drive     | 1               | 45                            | 2100                 | AM             | 535                          | 0.25                        |
|                                 | ı               | 45                            | 2100                 | PM             | 387                          | 0.18                        |
| On Daniel franc Cilementer Daie | 1               | 45                            | 2100                 | AM             | 2,285                        | 1.09                        |
| On-Ramp from Gibsonton Drive    | ı               | 43                            |                      | PM             | 1,655                        | 0.79                        |
| Southbound I-75                 |                 |                               |                      |                |                              |                             |
| Off-Ramp to Gibsonton Drive     | 1               | 45                            | 2100                 | AM             | 1,655                        | 0.79                        |
| On-Ramp to dibsortion Drive     | ı               | 45                            | 2100                 | PM             | 2,285                        | 1.09                        |
| On-Ramp from Gibsonton Drive    | 1               | 45                            | 2100                 | AM             | 387                          | 0.18                        |
|                                 | ı               | 45                            |                      | PM             | 535                          | 0.25                        |

Note: Red highlight indicates that the V/C ratio is over 1

The CORSIM microsimulation results of the I-75 ramp terminals and cross-streets at Gibsonton Drive are summarized for AM and PM peak hours of the opening year (2025) and shown in **Table 5.3** and **Table 5.4**. Compared to the existing year (2020), New East Bay Road intersection is expected to fail during the AM peak hour. No additional intersections fail in the PM peak hour compared to the AM peak hour.

Table 5.3: Opening Year (2025) Intersection Vehicle Delay and LOS - No-Build Alternative - AM Peak Hour

| Intersection      | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                   | EBL      | 12                     | 6                         | 286.3                       | F   |
|                   | EBT      | 961                    | 522                       | 318.5                       | F   |
|                   | EBR      | 51                     | 28                        | 240.1                       | F   |
|                   | Approach | 1,024                  | 556                       | 314.2                       | F   |
|                   | WBL      | 265                    | 194                       | 45.0                        | D   |
|                   | WBT      | 1,030                  | 789                       | 13.2                        | В   |
|                   | WBR      | 95                     | 77                        | 1.2                         | Α   |
|                   | Approach | 1,390                  | 1,060                     | 18.1                        | В   |
| New East Bay Road | NBL      | 73                     | 82                        | 31.3                        | С   |
|                   | NBT      | 38                     | 38                        | 33.7                        | С   |
|                   | NBR      | 554                    | 533                       | 39.7                        | D   |
|                   | Approach | 665                    | 653                       | 38.3                        | D   |
|                   | SBL      | 60                     | 60                        | 88.1                        | F   |
|                   | SBT      | 17                     | 16                        | 67.7                        | Е   |
|                   | SBR      | 8                      | 7                         | 54.9                        | D   |
|                   | Approach | 85                     | 83                        | 81.4                        | F   |
|                   | Overall  | 3,164                  | 2,352                     | 96.0                        | F   |

Table 5.3 (Continued): Opening Year (2025) Intersection Vehicle Delay and LOS - No-Build Alternative – AM Peak Hour

| Intersection                  | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                               | EBT      | 1,460                  | 1,042                     | 103.3                       | F   |
|                               | EBR      | 115                    | 77                        | 43.4                        | D   |
|                               | Approach | 1,575                  | 1,119                     | 99.2                        | F   |
|                               | WBL      | 272                    | 418                       | 138.8                       | F   |
| Courthhound L7F Dama Tarminal | WBT      | 825                    | 756                       | 8.7                         | Α   |
| Southbound I-75 Ramp Terminal | Approach | 1,097                  | 1,174                     | 55.0                        | E   |
|                               | SBL      | 1,090                  | 578                       | 168.4                       | F   |
|                               | SBR      | 565                    | 299                       | 3.6                         | Α   |
|                               | Approach | 1,655                  | 877                       | 112.2                       | F   |
|                               | Overall  | 4,327                  | 3,170                     | 86.4                        | F   |
|                               | EBL      | 780                    | 510                       | 475.3                       | F   |
|                               | EBT      | 1,770                  | 1,108                     | 3.1                         | Α   |
|                               | Approach | 2,550                  | 1,618                     | 151.9                       | F   |
|                               | WBT      | 939                    | 1,030                     | 1.6                         | Α   |
|                               | WBR      | 1,505                  | 1,365                     | 10.0                        | В   |
| Northbound I-75 Ramp Terminal | Approach | 2,444                  | 2,395                     | 6.4                         | Α   |
|                               | NBL      | 158                    | 142                       | 9.2                         | Α   |
|                               | NBR      | 377                    | 326                       | 3.3                         | Α   |
|                               | Approach | 535                    | 468                       | 5.1                         | Α   |
|                               | Overall  | 5,529                  | 4,481                     | 58.8                        | F   |
|                               | EBL      | 52                     | 29                        | 87.4                        | F   |
|                               | EBT      | 1,960                  | 1,326                     | 1.6                         | Α   |
|                               | EBR      | 135                    | 83                        | 0.2                         | Α   |
|                               | Approach | 2,147                  | 1,438                     | 3.2                         | Α   |
|                               | WBL      | 49                     | 46                        | 89.5                        | F   |
|                               | WBT      | 2,257                  | 2,213                     | 6.4                         | Α   |
|                               | WBR      | 2                      | 0                         | 0.0                         | Α   |
|                               | Approach | 2,308                  | 2,259                     | 8.1                         | Α   |
| Fern Hill Drive               | NBL      | 100                    | 97                        | 79.5                        | Е   |
| -                             | NBT      | 2                      | 1                         | 82.5                        | F   |
| -                             | NBR      | 78                     | 77                        | 20.2                        | С   |
| -                             | Approach | 180                    | 175                       | 53.5                        | D   |
| -                             | SBL      | 8                      | 8                         | 76.0                        | Е   |
| -                             | SBT      | 0                      | 0                         | 0.0                         | A   |
| -                             | SBR      | 87                     | 85                        | 50.5                        | D   |
|                               | Approach | 95                     | 93                        | 52.7                        | D   |
|                               | Overall  | 4,730                  | 3,965                     | 9.4                         | Α   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Table 5.4: Opening Year (2025) Intersection Vehicle Delay and LOS - No-Build Alternative - PM Peak Hour

| Intersection                  | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                               | EBL      | 14                     | 11                        | 53.2                        | D   |
|                               | EBT      | 995                    | 955                       | 49.6                        | D   |
|                               | EBR      | 214                    | 206                       | 11.0                        | В   |
|                               | Approach | 1,223                  | 1,172                     | 42.9                        | D   |
|                               | WBL      | 945                    | 872                       | 38.9                        | D   |
|                               | WBT      | 707                    | 668                       | 8.7                         | Α   |
|                               | WBR      | 74                     | 64                        | 1.0                         | Α   |
|                               | Approach | 1,726                  | 1,604                     | 24.8                        | С   |
| New East Bay Road             | NBL      | 92                     | 81                        | 44.5                        | D   |
|                               | NBT      | 40                     | 38                        | 48.0                        | D   |
|                               | NBR      | 350                    | 334                       | 7.9                         | Α   |
|                               | Approach | 482                    | 453                       | 17.8                        | В   |
|                               | SBL      | 45                     | 43                        | 46.4                        | D   |
|                               | SBT      | 65                     | 61                        | 46.8                        | D   |
|                               | SBR      | 8                      | 9                         | 20.5                        | С   |
|                               | Approach | 118                    | 113                       | 44.6                        | D   |
|                               | Overall  | 3,549                  | 3,342                     | 30.9                        | С   |
|                               | EBT      | 1,232                  | 1,189                     | 53.4                        | D   |
|                               | EBR      | 158                    | 150                       | 4.3                         | Α   |
|                               | Approach | 1,390                  | 1,339                     | 47.9                        | D   |
|                               | WBL      | 377                    | 374                       | 115.5                       | F   |
| C (1) 1175                    | WBT      | 946                    | 967                       | 17.7                        | В   |
| Southbound I-75 Ramp Terminal | Approach | 1,323                  | 1,341                     | 45.0                        | D   |
|                               | SBL      | 1,505                  | 1,246                     | 43.2                        | D   |
|                               | SBR      | 780                    | 641                       | 3.5                         | Α   |
|                               | Approach | 2,285                  | 1,887                     | 29.7                        | С   |
|                               | Overall  | 4,998                  | 4,567                     | 39.5                        | D   |
|                               | EBL      | 565                    | 490                       | 35.8                        | Е   |
|                               | EBT      | 2,172                  | 1,957                     | 0.01                        | Α   |
|                               | Approach | 2,737                  | 2,447                     | 7.2                         | Α   |
|                               | WBT      | 1,208                  | 1,216                     | 1.2                         | Α   |
|                               | WBR      | 1,090                  | 969                       | 5.3                         | Α   |
| Northbound I-75 Ramp Terminal | Approach | 2,298                  | 2,185                     | 3.0                         | Α   |
|                               | NBL      | 115                    | 114                       | 7.2                         | Α   |
|                               | NBR      | 272                    | 270                       | 3.3                         | Α   |
|                               | Approach | 387                    | 384                       | 4.4                         | Α   |
|                               | Overall  | 5,422                  | 5,016                     | 5.2                         | Α   |

Table 5.4 (Continued): Opening Year (2025) Intersection Vehicle Delay and LOS - No-Build Alternative – PM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 38                     | 39                        | 105.3                       | F   |
|                 | EBT      | 2,328                  | 2,129                     | 3.9                         | Α   |
|                 | EBR      | 78                     | 62                        | 1.4                         | Α   |
|                 | Approach | 2,444                  | 2,230                     | 5.6                         | Α   |
|                 | WBL      | 42                     | 44                        | 94.4                        | F   |
|                 | WBT      | 2,140                  | 2,035                     | 7.1                         | Α   |
|                 | WBR      | 28                     | 23                        | 3.5                         | Α   |
|                 | Approach | 2,210                  | 2,102                     | 8.9                         | Α   |
| Fern Hill Drive | NBL      | 42                     | 40                        | 84.7                        | F   |
|                 | NBT      | 2                      | 3                         | 90.1                        | F   |
|                 | NBR      | 86                     | 81                        | 31.6                        | С   |
|                 | Approach | 130                    | 124                       | 50.2                        | D   |
|                 | SBL      | 9                      | 9                         | 82.0                        | F   |
|                 | SBT      | 6                      | 7                         | 95.1                        | F   |
|                 | SBR      | 116                    | 108                       | 49.6                        | D   |
|                 | Approach | 131                    | 124                       | 54.5                        | D   |
|                 | Overall  | 4,915                  | 4,580                     | 9.6                         | Α   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

The CORSIM microsimulation results evaluating vehicle queue lengths for intersections within the AOI of the I-75 at Gibsonton Drive interchange for AM and PM time periods of the opening year (2025) are summarized in **Table 5.5**. The available storage for intersections represents the left or right turn storage bay measured from the stop bar to the taper. The available storage for the off-ramps is measured from the stop bar to the gore point, with adjustment for deceleration length where applicable. As congestion increases, queues are expected to increase. During the AM peak hour, the following queues exceed the available storage lengths: the eastbound through at New East Bay Road, the eastbound through, westbound left, and southbound left at the southbound I-75 ramp terminal, and the eastbound through and left at the northbound I-75 ramp terminal. During the PM peak hour, the following queues exceed the available storage lengths: the westbound left at New East Bay Road, the eastbound through, westbound left and southbound left at the southbound I-75 ramp terminal, the eastbound left at the northbound I-75 ramp terminal, and the eastbound left at Fern Hill Drive. There are a few locations, other than Fern Hill Drive where a committed project is located, where the queue lengths show a slight reduction compared to the existing year (2020). However, these reductions are all within a single vehicle length. These slight reductions are due to additional upstream congestion in the system by the opening year (2025) at the southbound and northbound I-75 ramp terminals.

Table 5.5: Opening Year (2025) Intersection Vehicle Queue Lengths - No-Build Alternative

|                                               |          |                               | Off-ramp<br>Deceleration<br>Length                   |                                |         | Maximum Vehicle Queue<br>Length (Feet) |         |                                        |  |
|-----------------------------------------------|----------|-------------------------------|------------------------------------------------------|--------------------------------|---------|----------------------------------------|---------|----------------------------------------|--|
| Gibsonton Drive<br>Signalized<br>Intersection | Movement | Existing<br>Storage<br>(Feet) | adjustment<br>required<br>(Yes/No - #<br>of<br>Feet) | Available<br>Storage<br>(Feet) | AM Peak | Queue<br>extend<br>to I-75<br>mainline | PM Peak | Queue<br>extend to<br>I-75<br>mainline |  |
|                                               | EBL      | 190                           | No                                                   | 190                            | 50      | N/A                                    | 50      | N/A                                    |  |
|                                               | EBT      | 1100                          | No                                                   | 1,100                          | 1,350   | N/A                                    | 625     | N/A                                    |  |
|                                               | EBR      | 250                           | No                                                   | 250                            | 100     | N/A                                    | 150     | N/A                                    |  |
|                                               | WBL      | 530                           | No                                                   | 530                            | 225     | N/A                                    | 625     | N/A                                    |  |
| New East Bay<br>Road                          | WBT      | 730                           | No                                                   | 730                            | 400     | N/A                                    | 350     | N/A                                    |  |
|                                               | WBR      | 730                           | No                                                   | 730                            | 75      | N/A                                    | 75      | N/A                                    |  |
|                                               | NBTL     | 410                           | No                                                   | 410                            | 175     | N/A                                    | 225     | N/A                                    |  |
|                                               | NBR      | 390                           | No                                                   | 390                            | 350     | N/A                                    | 150     | N/A                                    |  |
|                                               | SBLTR    | 430                           | No                                                   | 430                            | 200     | N/A                                    | 200     | N/A                                    |  |
|                                               | EBT      | 730                           | No                                                   | 730                            | 1,600   | N/A                                    | 1,075   | N/A                                    |  |
|                                               | EBR      | 520                           | No                                                   | 520                            | 75      | N/A                                    | 0       | N/A                                    |  |
| Southbound I-75                               | WBL      | 640                           | No                                                   | 640                            | 725     | N/A                                    | 725     | N/A                                    |  |
| Ramp Terminal                                 | WBT      | 1950                          | No                                                   | 1,950                          | 675     | N/A                                    | 600     | N/A                                    |  |
|                                               | SBL      | 1810                          | Yes (440')                                           | 1,370                          | 1,650   | Yes                                    | 1,400   | Yes                                    |  |
|                                               | SBR      | 1860                          | Yes (440')                                           | 1,420                          | 550     | No                                     | 375     | No                                     |  |
|                                               | EBL      | 640                           | No                                                   | 640                            | 875     | N/A                                    | 725     | N/A                                    |  |
|                                               | EBT      | 1950                          | No                                                   | 1,950                          | 2,400   | N/A                                    | 150     | N/A                                    |  |
| Northbound I-75                               | WBT      | 730                           | No                                                   | 730                            | 50      | N/A                                    | 50      | N/A                                    |  |
| Ramp Terminal                                 | WBR      | 730                           | No                                                   | 730                            | 550     | N/A                                    | 100     | N/A                                    |  |
|                                               | NBL      | 375                           | No                                                   | 375                            | 125     | No                                     | 125     | No                                     |  |
|                                               | NBR      | 2600                          | Yes (440')                                           | 2160                           | 25      | No                                     | 25      | No                                     |  |
|                                               | EBL      | 250                           | No                                                   | 250                            | 125     | N/A                                    | 300     | N/A                                    |  |
|                                               | EBT      | 730                           | No                                                   | 730                            | 225     | N/A                                    | 725     | N/A                                    |  |
|                                               | EBR      | 215                           | No                                                   | 215                            | 50      | N/A                                    | 200     | N/A                                    |  |
| Fern Hill Drive                               | WBL      | 330                           | No                                                   | 330                            | 175     | N/A                                    | 175     | N/A                                    |  |
|                                               | WBTR     | 1,170                         | No                                                   | 1,170                          | 775     | N/A                                    | 725     | N/A                                    |  |
|                                               | NBLTR    | 580                           | No                                                   | 580                            | 100     | N/A                                    | 50      | N/A                                    |  |
| _                                             | SBLTR    | 410                           | No                                                   | 410                            | 25      | N/A                                    | 25      | N/A                                    |  |

Note: The available storage lengths for through lanes on Gibsonton Drive are the roadway segment distance between upstream and downstream intersections.

Note: Where vehicle queues exceed the length of the CORSIM link, queue lengths from upstream links are added.

Note: Red highlight indicates that maximum vehicle queue length exceeds available storage length

The CORSIM microsimulation of the arterial operating speeds estimated for the various roadway segments along Gibsonton Drive for AM and PM peak hours are summarized in **Table 5.6**. Compared to the existing year (2020), travel speeds on Gibsonton Drive decrease with the additional congestion in the network. The same segments that failed in the existing year (2020) are expected to fail in the opening year (2025) except for westbound Gibsonton Drive from east of Fern Hill Drive to Fern Hill Drive. The results indicate that

there is a minor increase in the speed on eastbound Gibsonton Drive, east of the northbound ramp terminal. However, this is due to upstream bottlenecks. It is noted that westbound Gibsonton Drive, east of Fern Hill Drive has a slight increase in speed between opening year (2025) and existing year (2020). A review of delay at westbound approach at Fern Hill Drive reveals a slight decrease in delay. Neither of these changes are significant and model coding was reviewed for accuracy at this location.

Table 5.6: Opening Year (2025) Gibsonton Drive Arterial Speed and LOS - No-Build Alternative

| Gibsonton Drive Arte          | rial Roadway Segments         | Free Flow   | AM F           | eak  | PM Peak        |      |
|-------------------------------|-------------------------------|-------------|----------------|------|----------------|------|
| From                          | То                            | Speed (mph) | Speed<br>(mph) | LOS* | Speed<br>(mph) | LOS* |
| Eastbound                     |                               |             |                |      |                |      |
| West of New East Bay Road     | New East Bay Road             | 45          | 2              | F    | 11             | F    |
| New East Bay Road             | Southbound I-75 Ramp Terminal | 45          | 3              | F    | 21             | D    |
| Southbound I-75 Ramp Terminal | Northbound I-75 Ramp Terminal | 45          | 14             | F    | 27             | C    |
| Northbound I-75 Ramp Terminal | Fern Hill Drive               | 45          | 33             | В    | 28             | С    |
| Fern Hill Drive               | East of Fern Hill Drive       | 45          | 32             | В    | 29             | С    |
| Total                         |                               |             | 22             | D    | 26             | D    |
| Westbound                     |                               |             |                |      |                |      |
| East of Fern Hill Drive       | Fern Hill Drive               | 45          | 19             | D    | 19             | D    |
| Fern Hill Drive               | Northbound I-75 Ramp Terminal | 45          | 25             | С    | 31             | В    |
| Northbound I-75 Ramp Terminal | Southbound I-75 Ramp Terminal | 45          | 29             | С    | 29             | C    |
| Southbound I-75 Ramp Terminal | New East Bay Road             | 45          | 20             | D    | 20             | D    |
| New East Bay Road             | West of New East Bay Road     | 45          | 38             | Α    | 38             | Α    |
| Total                         |                               |             | 24             | С    | 26             | С    |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that either the density or speed does not meet the LOS target, D

## 5.1.2 Build Alternative

This section provides a summary of the operational results for the Build Alternative; full results are available in **Appendix J**. The CORSIM microsimulation results for the evaluation of the I-75 basic freeway segments and ramp merge/diverge areas for the AM and PM peak hour periods are shown in **Table 5.7** and **Figure 5.2**. The Build Alternative includes the various interchange improvements described previously in **Section 4**. These geometric improvements will improve capacity, particularly at the southbound offramp diverge area where the addition of a lane on the southbound I-75 ramp will allow vehicles to preposition more effectively and safely. Therefore, the car following sensitivity multiplier was reset to a default value of 100 percent in the CORSIM model.

In the opening year (2025), northbound I-75 continues to meet the LOS target D under the Build Alternative. Southbound I-75, north of Gibsonton Drive, still fails during the PM peak hour period. This is due to the estimated demand volume-to-capacity exceeding 1.0 during the PM peak hour of opening year (2025). This identified capacity deficiency along southbound I-75 north of Gibsonton drive will be addressed by the implementation of express lanes on I-75 prior to the design year (2045).

Overall, the estimated density decreases, and the speed increases compared to the No-Build Alternative. Additionally, the number of vehicles serviced during the peak hour under the Build Alternative increases on every I-75 southbound segment compared to the No-Build Alternative. During the PM peak hour, the LOS on I-75 northbound, south of Gibsonton Drive degrades from D under the No-Build Alternative to E under the Build Alternative. However, this is due to alleviating upstream bottlenecks and allowing more vehicles to reach this point.

Table 5.7 Opening Year (2025) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicle Density and LOS – Build Alternative

| Basic Freeway Segment and<br>Ramp Merge/Diverge Areas | Type             | No. of<br>Lanes | Time<br>Period | Demand<br>Volumes<br>(vph) | Simulated<br>Volume<br>(vph) | Speed<br>(mph) | Estimated<br>Density<br>(pc/mi/ln) | LOS* |
|-------------------------------------------------------|------------------|-----------------|----------------|----------------------------|------------------------------|----------------|------------------------------------|------|
| Northbound I-75                                       |                  |                 |                |                            |                              |                |                                    |      |
| South of Gibsonton Drive                              | Basic            | 3               | AM             | 7,643                      | 6,682                        | 64             | 33.5                               | D    |
| South of dipsoliton prive                             | Freeway          | 3               | PM             | 6,735                      | 6,568                        | 64             | 32.8                               | D    |
| Off-Ramp to Gibsonton Drive                           | Major            | 3               | AM             | 7,643                      | 6,675                        | 62             | 25.6                               | С    |
|                                                       | Diverge          | J               | PM             | 6,735                      | 6,566                        | 63             | 26.2                               | D    |
| Gibsonton Drive Off-Ramp to                           | Basic            |                 | AM             | 7,108                      | 6,204                        | 63             | 31.7                               | D    |
| Gibsonton Drive Eastbound<br>On-Ramp                  | Freeway          | 3               | PM             | 6,348                      | 6,177                        | 63             | 31.5                               | D    |
| On-Ramp from Eastbound                                | Ramp             | 4               | AM             | 7,888                      | 7,058                        | 64             | 26.6                               | D    |
| Gibsonton Drive                                       | Merge            | 4               | PM             | 6,913                      | 6,888                        | 64             | 25.8                               | C    |
| Eastbound Gibsonton Drive                             | Basic<br>Freeway |                 | AM             | 7,888                      | 7,058                        | 65             | 26.1                               | D    |
| On-Ramp to Westbound<br>Gibsonton Drive On-Ramp       |                  | 4               | PM             | 6,913                      | 6,887                        | 66             | 25.4                               | С    |
| On-Ramp from Westbound                                | Ramp             | 4               | AM             | 9,393                      | 8,464                        | 61             | 21.4                               | C    |
| Gibsonton Drive                                       | Merge            |                 | PM             | 8,003                      | 7,901                        | 62             | 19.8                               | C    |
| On-Ramp from Westbound                                | Ramp             | 4               | AM             | 9,393                      | 8,463                        | 62             | 26.8                               | D    |
| Gibsonton Drive                                       | Merge            |                 | PM             | 8,003                      | 7,904                        | 63             | 24.5                               | С    |
| North of Gibsonton Drive                              | Basic            | 4               | AM             | 9,393                      | 8,461                        | 64             | 30.1                               | D    |
| North of dibsortion brive                             | Freeway          |                 | PM             | 8,003                      | 7,904                        | 64             | 27.8                               | D    |
| Southbound I-75                                       |                  |                 |                |                            |                              |                |                                    |      |
| North of Gibsonton Drive                              | Basic            | 4               | AM             | 8,003                      | 7,660                        | 64             | 28.9                               | D    |
|                                                       | Freeway          |                 | PM             | 9,393                      | 8,745                        | 36             | 65.4                               | F    |
| Off-Ramp to Gibsonton Drive                           | Major            | 4               | AM             | 8,003                      | 7,649                        | 51             | 37.8                               | E    |
|                                                       | Diverge          | •               | PM             | 9,393                      | 8,605                        | 47             | 44.9                               | E    |
| Gibsonton Drive Off-Ramp to                           | Basic            | 3               | AM             | 6,348                      | 6,035                        | 62             | 31.2                               | D    |
| Gibsonton Drive On-Ramp                               | Freeway          |                 | PM             | 7,108                      | 6,529                        | 61             | 34.8                               | D    |
| On-Ramp from Gibsonton<br>Drive                       | Ramp             | 3               | AM             | 6,735                      | 6,401                        | 58             | 29.6                               | D    |
|                                                       | Merge            |                 | PM             | 7,643                      | 7,037                        | 56             | 34.2                               | D    |
| South of Gibsonton Drive                              | Basic            | 3               | AM             | 6,735                      | 6,399                        | 64             | 32.3                               | D    |
|                                                       | Freeway          |                 | PM             | 7,643                      | 7,030                        | 63             | 36.0                               | E    |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that the density does not meet the LOS target, D

|                                                                      | Southbound I-75 Mainline |                         |       |           |           |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------|-------------------------|-------|-----------|-----------|--|--|--|--|--|
| Speed (mph) (pc/mi/ln) >=63 <=26 <63.57 >26.35 <57.45 >35.45 <45 >45 |                          | From<br>Gibsonton Drive |       | To Gibson | ton Drive |  |  |  |  |  |
| AM Peak Hour                                                         |                          |                         |       |           |           |  |  |  |  |  |
| Demand (vph)                                                         | 6,735                    | 6,735                   | 6,348 | 8,00      | 03 8,003  |  |  |  |  |  |
| Simulated (vph)                                                      | 6,399                    | 6,401                   | 6,035 | 7,64      | 7,660     |  |  |  |  |  |
| Percent Processed                                                    | 95%                      | 95%                     | 95%   | 969       | % 96%     |  |  |  |  |  |
| Speed (mph)                                                          | 64                       | 58                      | 62    | 51        | 64        |  |  |  |  |  |
| Estimated Density (pc/mi/ln)                                         | 32.3                     | 29.6                    | 31.2  | 37.       | 8 28.9    |  |  |  |  |  |
| PM Peak Hour                                                         |                          |                         |       |           |           |  |  |  |  |  |
| Demand (vph)                                                         | 7,643                    | 7,643                   | 7,108 | 9,39      | 93 9,393  |  |  |  |  |  |
| Simulated (vph)                                                      | 7,030                    | 7,037                   | 6,529 | 8,60      | 05 8,745  |  |  |  |  |  |
| Percent Processed                                                    | 92%                      | 92%                     | 92%   | 92        | % 93%     |  |  |  |  |  |
| Speed (mph)                                                          | 63                       | 56                      | 61    | 47        | 7 36      |  |  |  |  |  |
| Estimated Density (pc/mi/ln)                                         | 36.0                     | 34.2                    | 34.8  | 44.       | .9 65.4   |  |  |  |  |  |

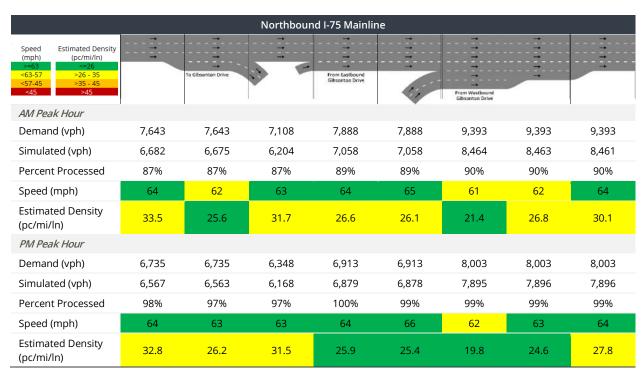



Figure 5.2: Opening Year (2025) Build Alternative CORSIM Freeway MOEs

Volume-to-capacity ratios for each ramp of the I-75 at Gibsonton Drive interchange in the AM and PM time periods are summarized in **Table 5.8**. This capacity check indicates that the ramps will operate under capacity during opening year (2025).

Table 5.8: Opening Year (2025) I-75 Ramps Capacity Check - Build Alternative

| I-75 On and Off Ramp Location             | No. of<br>Lanes | Ramp Free Flow<br>Speed (mph) | Capacity<br>(veh/hr) | Time<br>Period | Demand<br>Volume<br>(veh/hr) | Volume to<br>Capacity Ratio |
|-------------------------------------------|-----------------|-------------------------------|----------------------|----------------|------------------------------|-----------------------------|
| Northbound I-75                           |                 |                               |                      |                |                              |                             |
| Off-Ramp to Gibsonton Drive               | 2               | 45                            | 4200                 | AM             | 535                          | 0.13                        |
|                                           | 2               | 45                            | 4200                 | PM             | 387                          | 0.09                        |
| On-Ramp from Eastbound<br>Gibsonton Drive | 1               | 45                            | 2100                 | AM             | 780                          | 0.37                        |
|                                           | ı               |                               |                      | PM             | 565                          | 0.27                        |
| On-Ramp from Westbound                    | 2               | 45                            | 4200                 | AM             | 1,505                        | 0.36                        |
| Gibsonton Drive                           | 2               | 45                            | 4200                 | PM             | 1,090                        | 0.26                        |
| Southbound I-75                           |                 |                               |                      |                |                              |                             |
| Off Darra to Cibronton Drive              | 2               | 45                            | 4200                 | AM             | 1,655                        | 0.39                        |
| Off-Ramp to Gibsonton Drive               | 2               | 45                            | 4200                 | PM             | 2,285                        | 0.54                        |
| On Dama from Ciboonton Drive              | 1               | 45                            | 2100                 | AM             | 387                          | 0.18                        |
| On-Ramp from Gibsonton Drive              | I .             | 45                            | 2100                 | PM             | 535                          | 0.25                        |

The CORSIM microsimulation results of the I-75 ramp terminals and cross-streets at Gibsonton Drive for AM and PM peak hour periods of the opening year (2025) are summarized in **Table 5.9** and **Table 5.10**. During the opening year (2025), when comparing the No-Build and Build Alternatives, there are improvements throughout the network with serviced vehicles increasing at nearly every movement as congestion is relieved. During both the AM and PM peak hours there are improvements to delay and LOS, particularly at the I-75 ramp terminals which are no longer experiencing a failing LOS.

Some increase in delay at specific locations can be expected as upstream bottlenecks are alleviated and vehicle throughput is improved. No movements are expected to fail during the AM peak hour under the Build Alternative.

January, 2023

Table 5.9: Opening Year (2025) Intersection Vehicle Delay and LOS – Build Alternative – AM Peak Hour

| Intersection                   | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|--------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                                | EBL      | 12                     | 10                        | 36.9                        | D   |
|                                | EBT      | 961                    | 942                       | 14.4                        | В   |
|                                | EBR      | 51                     | 51                        | 1.4                         | Α   |
|                                | Approach | 1,024                  | 1,003                     | 13.9                        | В   |
|                                | WBL      | 265                    | 267                       | 36.2                        | D   |
|                                | WBT      | 1,030                  | 1,031                     | 5.6                         | Α   |
|                                | WBR      | 95                     | 102                       | 0.8                         | Α   |
| New East Bay Road              | Approach | 1,390                  | 1,400                     | 11.1                        | В   |
|                                | NBL      | 73                     | 73                        | 31.1                        | С   |
|                                | NBT      | 38                     | 39                        | 33.6                        | С   |
|                                | NBR      | 554                    | 537                       | 7.7                         | Α   |
|                                | Approach | 665                    | 649                       | 11.9                        | В   |
|                                | SBL      | 60                     | 59                        | 30.6                        | С   |
|                                | SBT      | 17                     | 16                        | 30.2                        | С   |
|                                | SBR      | 8                      | 7                         | 15.6                        | В   |
|                                | Approach | 85                     | 82                        | 29.2                        | С   |
|                                | Overall  | 3,164                  | 3,134                     | 12.6                        | В   |
|                                | EBT      | 1,460                  | 1,441                     | 19.2                        | В   |
|                                | EBR      | 115                    | 105                       | 4.9                         | Α   |
|                                | Approach | 1,575                  | 1,546                     | 18.3                        | В   |
|                                | WBL      | 272                    | 277                       | 3.5                         | Α   |
|                                | WBT      | 825                    | 841                       | 51.2                        | D   |
| Southbound I-75 Ramp Terminal  | Approach | 1,097                  | 1,118                     | 39.4                        | D   |
|                                | SBL      | 1,090                  | 1,071                     | 25.3                        | С   |
|                                | SBR      | 565                    | 558                       | 5.1                         | Α   |
|                                | Approach | 1,655                  | 1,629                     | 18.4                        | В   |
|                                | Overall  | 4,327                  | 4,293                     | 23.8                        | С   |
|                                | EBL      | 780                    | 861                       | 6.2                         | Α   |
|                                | EBT      | 1,770                  | 1,657                     | 23.3                        | С   |
|                                | Approach | 2,550                  | 2,518                     | 17.4                        | В   |
|                                | WBT      | 939                    | 981                       | 29.2                        | С   |
| North Control 175 Dec. To 11 1 | WBR      | 1,505                  | 1,417                     | 7.8                         | Α   |
| Northbound I-75 Ramp Terminal  | Approach | 2,444                  | 2,398                     | 16.5                        | В   |
| -                              | NBL      | 158                    | 135                       | 17.5                        | В   |
| -                              | NBR      | 377                    | 333                       | 33.4                        | С   |
|                                | Approach | 535                    | 468                       | 28.8                        | С   |
|                                | Overall  | 5,529                  | 5,384                     | 18.0                        | В   |

Table 5.9 (Continued): Opening Year (2025) Intersection Vehicle Delay and LOS – Build Alternative – AM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 52                     | 58                        | 28.3                        | С   |
|                 | EBT      | 1,960                  | 1,813                     | 14.3                        | В   |
|                 | EBR      | 135                    | 120                       | 1.5                         | Α   |
|                 | Approach | 2,147                  | 1,991                     | 13.9                        | В   |
|                 | WBL      | 49                     | 45                        | 33.9                        | С   |
|                 | WBT      | 2,257                  | 2,212                     | 9.1                         | Α   |
|                 | WBR      | 2                      | 0                         | 0.0                         | Α   |
|                 | Approach | 2,308                  | 2,257                     | 9.6                         | Α   |
| Fern Hill Drive | NBL      | 100                    | 99                        | 32.7                        | С   |
|                 | NBT      | 2                      | 2                         | 35.9                        | D   |
|                 | NBR      | 78                     | 77                        | 9.4                         | Α   |
|                 | Approach | 180                    | 178                       | 22.6                        | С   |
|                 | SBL      | 8                      | 9                         | 32.5                        | С   |
|                 | SBT      | 0                      | 0                         | 0.0                         | Α   |
| -               | SBR      | 87                     | 84                        | 14.2                        | В   |
|                 | Approach | 95                     | 93                        | 16.0                        | В   |
|                 | Overall  | 4,730                  | 4,519                     | 12.2                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

January, 2023

Table 5.10: Opening Year (2025) Intersection Vehicle Delay and LOS – Build Alternative – PM Peak Hour

| Intersection                  | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                               | EBL      | 14                     | 10                        | 37.6                        | D   |
|                               | EBT      | 995                    | 936                       | 23.9                        | C   |
|                               | EBR      | 214                    | 210                       | 3.1                         | Α   |
|                               | Approach | 1,223                  | 1,156                     | 20.2                        | С   |
|                               | WBL      | 945                    | 895                       | 23.2                        | С   |
|                               | WBT      | 707                    | 671                       | 13.0                        | В   |
|                               | WBR      | 74                     | 69                        | 2.1                         | Α   |
|                               | Approach | 1,726                  | 1,635                     | 18.1                        | В   |
| New East Bay Road             | NBL      | 92                     | 81                        | 38.8                        | D   |
|                               | NBT      | 40                     | 40                        | 40.6                        | D   |
|                               | NBR      | 350                    | 333                       | 5.4                         | Α   |
|                               | Approach | 482                    | 454                       | 14.5                        | В   |
|                               | SBL      | 45                     | 42                        | 41.4                        | D   |
|                               | SBT      | 65                     | 61                        | 41.5                        | D   |
| -                             | SBR      | 8                      | 9                         | 22.9                        | С   |
|                               | Approach | 118                    | 112                       | 40.0                        | D   |
|                               | Overall  | 3,549                  | 3,357                     | 19.1                        | В   |
|                               | EBT      | 1,232                  | 1,170                     | 23.1                        | С   |
| -                             | EBR      | 158                    | 143                       | 6.2                         | Α   |
| -                             | Approach | 1,390                  | 1,313                     | 21.3                        | С   |
| -                             | WBL      | 377                    | 361                       | 4.3                         | Α   |
| -                             | WBT      | 946                    | 933                       | 19.6                        | В   |
| Southbound I-75 Ramp Terminal | Approach | 1,323                  | 1,294                     | 15.3                        | В   |
| -                             | SBL      | 1,505                  | 1,370                     | 17.6                        | В   |
| -                             | SBR      | 780                    | 700                       | 7.0                         | Α   |
| -                             | Approach | 2,285                  | 2,070                     | 14.0                        | В   |
| -                             | Overall  | 4,998                  | 4,677                     | 16.4                        | В   |
|                               | EBL      | 565                    | 699                       | 5.0                         | Α   |
| -                             | EBT      | 2,172                  | 1,846                     | 11.6                        | В   |
| -                             | Approach | 2,737                  | 2,545                     | 9.8                         | Α   |
| -                             | WBT      | 1,208                  | 1,183                     | 32.9                        | С   |
| -                             | WBR      | 1,090                  | 993                       | 8.3                         | Α   |
| Northbound I-75 Ramp Terminal | Approach | 2,298                  | 2,176                     | 21.6                        | С   |
| -                             | NBL      | 115                    | 107                       | 17.8                        | В   |
| -                             | NBR      | 272                    | 270                       | 35.0                        | D   |
| -                             | Approach | 387                    | 377                       | 30.1                        | C   |
| -                             | Overall  | 5,422                  | 5,098                     | 16.3                        | В   |

Table 5.10 (Continued): Opening Year (2025) Intersection Vehicle Delay and LOS - Build Alternative - PM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated Volume<br>(vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 38                     | 45                        | 36.0                        | D   |
|                 | EBT      | 2,328                  | 2,009                     | 9.4                         | Α   |
|                 | EBR      | 78                     | 62                        | 1.1                         | Α   |
|                 | Approach | 2,444                  | 2,116                     | 9.8                         | Α   |
|                 | WBL      | 42                     | 42                        | 35.9                        | D   |
|                 | WBT      | 2,140                  | 2,026                     | 5.8                         | Α   |
|                 | WBR      | 28                     | 23                        | 6.5                         | Α   |
|                 | Approach | 2,210                  | 2,091                     | 6.4                         | Α   |
| Fern Hill Drive | NBL      | 42                     | 38                        | 33.2                        | С   |
|                 | NBT      | 2                      | 3                         | 37.5                        | D   |
|                 | NBR      | 86                     | 84                        | 10.4                        | В   |
|                 | Approach | 130                    | 125                       | 18.0                        | В   |
|                 | SBL      | 9                      | 9                         | 38.4                        | D   |
|                 | SBT      | 6                      | 7                         | 40.3                        | D   |
|                 | SBR      | 116                    | 108                       | 12.5                        | В   |
|                 | Approach | 131                    | 124                       | 15.9                        | В   |
|                 | Overall  | 4,915                  | 4,456                     | 8.6                         | Α   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

The CORSIM microsimulation results for intersection vehicle queue lengths within the AOI for AM and PM peak hour periods of the opening year (2025) are summarized in **Table 5.11**. The available storage for intersections represents the left or right turn storage bay measured from the stop bar to the taper. The available storage for the off-ramps is measured from the stop bar to the gore point, with adjustment for deceleration length where applicable. Compared to the No-Build Alternative, queue lengths are improved, and no queues exceed the available storage lengths.

Table 5.11: Opening Year (2025) Intersection Vehicle Queue Lengths – Build Alternative

|                                 |          |                   | Off-ramp<br>Deceleration                                    |                             |            | Maximui<br>Queue Lei                   |            |                                        |
|---------------------------------|----------|-------------------|-------------------------------------------------------------|-----------------------------|------------|----------------------------------------|------------|----------------------------------------|
| Gibsonton Drive<br>Intersection | Movement | Storage<br>(Feet) | Length<br>adjustment<br>required<br>(Yes/No - # of<br>Feet) | Available<br>Storage (Feet) | AM<br>Peak | Queue<br>extend to<br>I-75<br>mainline | PM<br>Peak | Queue<br>extend to<br>I-75<br>mainline |
|                                 | EBL      | 190               | No                                                          | 190                         | 50         | N/A                                    | 50         | N/A                                    |
|                                 | EBT      | 1,100             | No                                                          | 1,100                       | 250        | N/A                                    | 300        | N/A                                    |
|                                 | EBR      | 250               | No                                                          | 250                         | 50         | N/A                                    | 100        | N/A                                    |
|                                 | WBL      | 1,300             | No                                                          | 1,300                       | 225        | N/A                                    | 375        | N/A                                    |
| New East Bay<br>Road            | WBT      | 1,780             | No                                                          | 1,780                       | 375        | N/A                                    | 350        | N/A                                    |
| Nodu                            | WBR      | 1,780             | No                                                          | 1,780                       | 75         | N/A                                    | 75         | N/A                                    |
|                                 | NBTL     | 410               | No                                                          | 410                         | 150        | N/A                                    | 200        | N/A                                    |
|                                 | NBR      | 390               | No                                                          | 390                         | 200        | N/A                                    | 150        | N/A                                    |
|                                 | SBLTR    | 430               | No                                                          | 430                         | 150        | N/A                                    | 175        | N/A                                    |
|                                 | EBT      | 1,780             | No                                                          | 1,780                       | 375        | N/A                                    | 350        | N/A                                    |
|                                 | EBR      | 530               | No                                                          | 530                         | 0          | N/A                                    | 25         | N/A                                    |
| Southbound I-75                 | WBL      | 900               | No                                                          | 900                         | 0          | N/A                                    | 75         | N/A                                    |
| Ramp Terminal                   | WBT      | 900               | No                                                          | 900                         | 450        | N/A                                    | 550        | N/A                                    |
|                                 | SBL      | 1990              | Yes (440')                                                  | 1,550                       | 450        | No                                     | 500        | No                                     |
|                                 | SBR      | 1970              | Yes (440')                                                  | 1,530                       | 475        | No                                     | 550        | No                                     |
|                                 | EBL      | 900               | No                                                          | 900                         | 150        | N/A                                    | 25         | N/A                                    |
|                                 | EBT      | 900               | No                                                          | 900                         | 600        | N/A                                    | 350        | N/A                                    |
| Northbound I-75                 | WBT      | 1,810             | No                                                          | 1,810                       | 275        | N/A                                    | 450        | N/A                                    |
| Ramp Terminal                   | WBR      | 1,810             | No                                                          | 1,810                       | 0          | N/A                                    | 0          | N/A                                    |
|                                 | NBL      | 2140              | No                                                          | 1,700                       | 125        | No                                     | 125        | No                                     |
|                                 | NBR      | 2120              | Yes (440')                                                  | 1,680                       | 250        | No                                     | 175        | No                                     |
|                                 | EBL      | 420               | No                                                          | 420                         | 125        | N/A                                    | 100        | N/A                                    |
|                                 | EBT      | 1,810             | No                                                          | 1,810                       | 450        | N/A                                    | 550        | N/A                                    |
|                                 | EBR      | 420               | No                                                          | 420                         | 75         | N/A                                    | 75         | N/A                                    |
|                                 | WBL      | 350               | No                                                          | 350                         | 100        | N/A                                    | 100        | N/A                                    |
| Farm USU D :                    | WBTR     | 580               | No                                                          | 580                         | 300        | N/A                                    | 200        | N/A                                    |
| Fern Hill Drive                 | NBL      | 200               | No                                                          | 200                         | 100        | N/A                                    | 50         | N/A                                    |
|                                 | NBT      | 580               | No                                                          | 580                         | 25         | N/A                                    | 25         | N/A                                    |
|                                 | NBR      | 240               | No                                                          | 240                         | 100        | N/A                                    | 100        | N/A                                    |
|                                 | SBTL     | 410               | No                                                          | 410                         | 50         | N/A                                    | 75         | N/A                                    |
|                                 | SBR      | 200               | No                                                          | 200                         | 75         | N/A                                    | 75         | N/A                                    |

Note: The available storage lengths for through lanes on Gibsonton Drive are the roadway segment distance between upstream and downstream intersections.

Note: Where vehicle queues exceed the length of the CORSIM link, queue lengths from upstream links are added.

Note: Red highlight indicates that maximum vehicle queue length exceeds available storage length

The CORSIM microsimulation results of the arterial operating speeds estimated for the various roadway segments along Gibsonton Drive are summarized in **Table 5.12**. During the opening year (2025), only one segment along eastbound Gibsonton Drive fails in the PM peak hour compared to three failing segments under the No-Build Alternative. Additionally, this segment from west of New East Bay Road to New East Bay Road shows an increase in speed compared to the No-Build Alternative. No segments along westbound Gibsonton Drive fail in the AM or PM peak hour under the Build. There is a reduction in the westbound direction in the AM and PM peak hours between the ramp terminals compared to the No-Build Alternative, which coincides with the reduction in travel speed from 45 miles per hour to 35 miles per hour.

Table 5.12: Opening Year (2025) Gibsonton Drive Arterial Speed and LOS - Build Alternative

| Gibsonton Drive Arte          | rial Roadway Segments         | Free Flow       | AM             | Peak  | PM I           | Peak  |
|-------------------------------|-------------------------------|-----------------|----------------|-------|----------------|-------|
| From                          | То                            | Speed*<br>(mph) | Speed<br>(mph) | LOS** | Speed<br>(mph) | LOS** |
| Eastbound                     |                               |                 |                |       |                |       |
| West of New East Bay Road     | New East Bay Road             | 45              | 20             | D     | 16             | E     |
| New East Bay Road             | Southbound I-75 Ramp Terminal | 45              | 38             | Α     | 37             | Α     |
| Southbound I-75 Ramp Terminal | Northbound I-75 Ramp Terminal | 35              | 17             | D     | 20             | С     |
| Northbound I-75 Ramp Terminal | Fern Hill Drive               | 45              | 26             | С     | 28             | С     |
| Fern Hill Drive               | East of Fern Hill Drive       | 45              | 34             | В     | 34             | В     |
| Total                         |                               |                 | 24             | С     | 25             | С     |
| Westbound                     |                               |                 |                |       |                |       |
| East of Fern Hill Drive       | Fern Hill Drive               | 45              | 19             | D     | 24             | С     |
| Fern Hill Drive               | Northbound I-75 Ramp Terminal | 45              | 27             | С     | 29             | С     |
| Northbound I-75 Ramp Terminal | Southbound I-75 Ramp Terminal | 35              | 21             | С     | 20             | С     |
| Southbound I-75 Ramp Terminal | New East Bay Road             | 45              | 27             | С     | 23             | С     |
| New East Bay Road             | West of New East Bay Road     | 45              | 36             | В     | 36             | В     |
| Total                         |                               |                 | 24             | С     | 24             | С     |

<sup>\*</sup> Free-flow speed between Southbound I-75 Ramp Terminal and Northbound I-75 Ramp Terminal is lowered by 10 mph, based on FDOT Development Design Criteria: D217 Diverging Diamond Interchanges (Revised on 4/1/2022)

Note: Red highlight indicates that the speed does not meet the LOS target D

## 5.2 Design Year (2045) Traffic Operational Analysis

The anticipated design year for the proposed interchange improvements for the I-75 at Gibsonton Drive interchange is 2045. To evaluate the No-Build and Build Alternatives, analysis of the future traffic operations was conducted, as previously discussed. Volumes on I-75 in the design year (2045) are expected to be higher than 9,999 vehicles per hour during the peak hours which is the maximum allowed vehicle entry in CORSIM. Therefore, modifications to the input links in CORSIM were made, per recommendations from *Appendix I: Frequently Asked Questions of the FHWA Traffic Analysis Toolbox Volume IV: Guidelines for Applying CORSIM Microsimulation Modeling Software*. The following sections provide summary of the MOEs for these alternatives.

<sup>\*\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made. LOS is determined from Exhibit 16-3 of the HCM, 6th Edition

## 5.2.1 No-Build Alternative

The No-Build Alternative retains existing roadway geometric and traffic control features within the AOI and matches the No-Build conditions in the I-75 PD&E study plus the addition of Express Lanes in the median of I-75. This section provides a summary of the operational results for the No-Build Alternative. Full results are available in **Appendix K**.

The CORSIM microsimulation results of the I-75 basic freeway segments and ramp merge/diverge areas for the AM and PM peak hour periods are shown in **Table 5.13**, **Figure 5.3**, and **Figure 5.4**. During the design year (2045), congestion is expected to worsen, creating bottlenecks at the Gibsonton Drive southbound off-ramp. Heavy congestion and bottlenecking are still preventing a large percent of vehicles from being serviced. The PM peak hour is expected to experience more congestion and bottlenecking on southbound I-75 at the Gibsonton Drive off-ramp, causing a reduction in serviced volumes when compared to the opening year (2025). The comparison of speed from the opening year (2025) to the design year (2045) is difficult as bottlenecks within the system are causing some speeds to show increases. However, these increased speeds are the result of unserved demand.

Table 5.13 Design Year (2045) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicle Density and LOS – No-Build Alternative

| Basic Freeway Segment and<br>Ramp Merge/Diverge Areas | Туре    | No. of<br>Lanes | Time<br>Period | Demand<br>Volumes<br>(vph) | Simulated<br>Volume<br>(vph) | Speed<br>(mph) | Estimated<br>Density<br>(pc/mi/ln) | LOS*                                                                                                                                           |
|-------------------------------------------------------|---------|-----------------|----------------|----------------------------|------------------------------|----------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Northbound I-75                                       |         |                 |                |                            |                              |                |                                    |                                                                                                                                                |
| South of Gibsonton Drive                              | Basic   | 3               | AM             | 8,044                      | 6,678                        | 64             | 33.5                               | D                                                                                                                                              |
| South of Gibsoriton Drive                             | Freeway | 3               | PM             | 6,679                      | 6,559                        | 64             | 32.9                               | D                                                                                                                                              |
| Off-Ramp to Gibsonton Drive                           | Ramp    | 3               | AM             | 8,044                      | 6,678                        | 57             | 32.2                               | D                                                                                                                                              |
| On-Namp to dibsoriton brive                           | Diverge | 3               | PM             | 6,669                      | 6,536                        | 58             | 31.3                               | D                                                                                                                                              |
| Gibsonton Drive Off-Ramp to<br>Managed Lane Ramp      | Basic   | 3               | AM             | 7,412                      | 6,132                        | 63             | 31.2                               | D                                                                                                                                              |
|                                                       | Freeway | 3               | PM             | 6,145                      | 6,088                        | 63             | 30.9                               | Sity LOS*  1.5 D 1.9 D 1.2 D 1.3 D 1.5 C 1.1 D 1.8 D 1.3 E 1.4 D 1.3 D 1.4 D 1.4 D 1.5 E 1.1 F 1.5 E 1.8 C 1.1 F 1.5 E 1.8 C 1.8 B 1.9 B 1.8 B |
| Ramp from Managed Lane                                | Ramp    | 3               | AM             | 7,724                      | 6,425                        | 63             | 24.5                               | C                                                                                                                                              |
|                                                       | Merge   | 3               | PM             | 6,435                      | 6,687                        | 62             | 26.1                               | D                                                                                                                                              |
| Managed Lane Ramp to                                  | Basic   | 3               | AM             | 7,724                      | 6,425                        | 63             | 32.8                               | D                                                                                                                                              |
| Gibsonton Drive On-Ramp                               | Freeway | 3               | PM             | 6,434                      | 6,688                        | 61             | 35.3                               | E                                                                                                                                              |
| On-Ramp from Gibsonton                                | Ramp    | 4               | AM             | 10,956                     | 8,399                        | 62             | 32.4                               | D                                                                                                                                              |
| Drive                                                 | Merge   | 4               | PM             | 8,419                      | 8,095                        | 62             | 31.3                               | D                                                                                                                                              |
| North of Gibsonton Drive                              | Basic   | 4               | AM             | 10,956                     | 8,398                        | 64             | 31.4                               | D                                                                                                                                              |
| North of dibsortion brive                             | Freeway | 4               | PM             | 8,420                      | 8,100                        | 65             | 30.2                               | D                                                                                                                                              |
| Southbound I-75                                       |         |                 |                |                            |                              |                |                                    |                                                                                                                                                |
| North of Gibsonton Drive                              | Basic   | 4               | AM             | 9,096                      | 3,971                        | 19             | 56.3                               | F                                                                                                                                              |
| Noteti of dibsortion brive                            | Freeway |                 | PM             | 10,703                     | 5,820                        | 21             | 83.6                               | F                                                                                                                                              |
| Off-Ramp to Gibsonton Drive                           | Ramp    | 4               | AM             | 9,096                      | 3,893                        | 31             | 48.1                               | F                                                                                                                                              |
| On-Kamp to dibsoriton Drive                           | Diverge | 4               | PM             | 10,703                     | 5,800                        | 39             | 44.5                               | Е                                                                                                                                              |
| Gibsonton Drive Off-Ramp to                           | Basic   | 3               | AM             | 6,756                      | 2,930                        | 66             | 14.2                               | В                                                                                                                                              |
| Gibsonton Drive On-Ramp                               | Freeway | 3               | PM             | 7,471                      | 4,014                        | 65             | 19.8                               | С                                                                                                                                              |
| On-Ramp from Gibsonton                                | Ramp    | 3               | AM             | 7,213                      | 3,425                        | 57             | 13.3                               | В                                                                                                                                              |
| Drive                                                 | Merge   |                 | PM             | 8,103                      | 4,349                        | 57             | 16.9                               | В                                                                                                                                              |
| South of Gibsonton Drive                              | Basic   | 3               | AM             | 7,213                      | 3,463                        | 66             | 16.8                               | В                                                                                                                                              |
|                                                       | Freeway | <u> </u>        | PM             | 8,103                      | 4,368                        | 65             | 21.4                               | С                                                                                                                                              |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

January, 2023

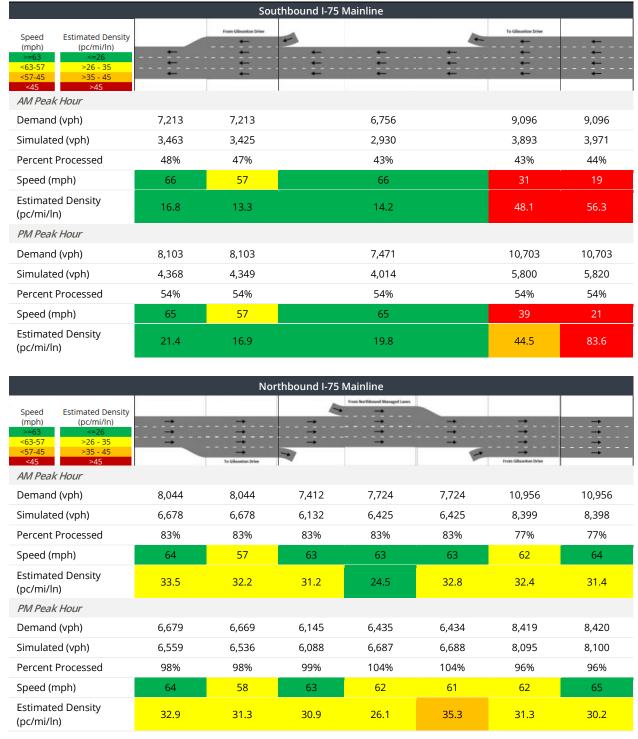



Figure 5.3: Design Year (2045) No-Build Alternative CORSIM Freeway MOEs

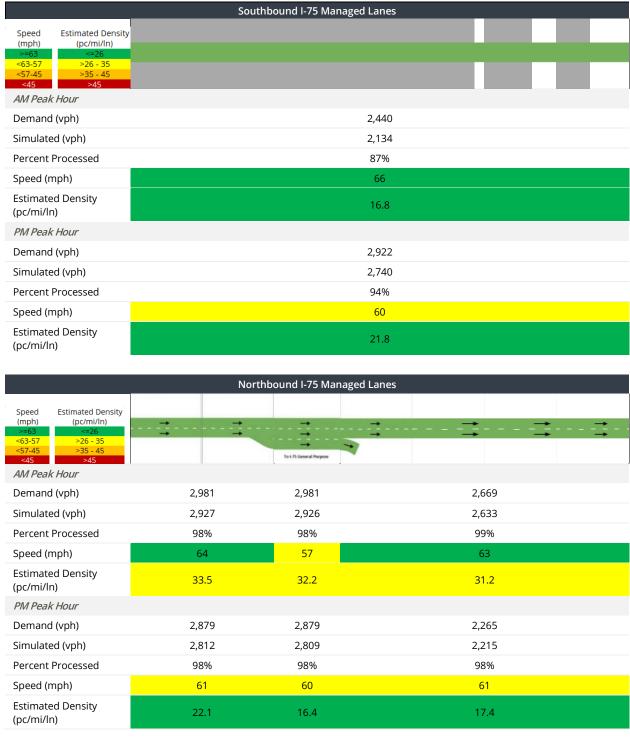



Figure 5.4: Design Year (2045) No-Build Alternative CORSIM Managed Lanes MOEs

Volume-to-capacity ratios for each ramp of the interchange are summarized in **Table 5.14**. Compared to the opening year (2025) No-Build Alternative, congestion is expected to increase, particularly on the northbound on-ramp from Gibsonton Drive, and the southbound off-ramp to Gibsonton Drive which will both fail during both peak periods in the design year (2045).

Table 5.14: Design Year (2045) I-75 Ramps Capacity Check - No-Build Alternative

| I-75 On and Off Ramp Location  | No. of<br>Lanes | Ramp Free Flow<br>Speed (mph) | Capacity<br>(veh/hr) | Time<br>Period | Demand<br>Volume<br>(veh/hr) | Volume to<br>Capacity Ratio |
|--------------------------------|-----------------|-------------------------------|----------------------|----------------|------------------------------|-----------------------------|
| Northbound I-75                |                 |                               |                      |                |                              |                             |
| Off-Ramp to Gibsonton Drive    | 1               | 45                            | 2100                 | AM             | 632                          | 0.30                        |
| On-Kamp to dibsoritori Drive   | '               | 45                            | 2100                 | PM             | 457                          | 0.22                        |
| On Deven from Cibernaton Drive | 1               | 45                            | 2100                 | AM             | 3,232                        | 1.54                        |
| On-Ramp from Gibsonton Drive   | ı               | 45                            | 2100                 | PM             | 2,340                        | 1.11                        |
| Southbound I-75                |                 |                               |                      |                |                              |                             |
| Off-Ramp to Gibsonton Drive    | 1               | 45                            | 2100                 | AM             | 2,340                        | 1.11                        |
| On-Ramp to dibsoritori Drive   | '               | 43                            | 2100                 | PM             | 3,232                        | 1.54                        |
| On-Ramp from Gibsonton Drive   | 1               | 45                            | 2100                 | AM             | 457                          | 0.22                        |
|                                | ļ               | 45                            | 2100                 | PM             | 632                          | 0.30                        |

Note: Red highlight indicates that the V/C ratio is over 1

The CORSIM microsimulation results of the I-75 ramp terminals and cross-streets at Gibsonton Drive for the design year (2045) are summarized in **Table 5.15** and **Table 5.16**. Like the results of the I-75 basic freeway segments and ramp merge/diverge areas, bottlenecks in the system are metering serviced demand.

While there are nine failing approaches in the design year (2045) compared to six failing approaches in the opening year (2025), there are some reductions in vehicle delay due to the upstream bottlenecks.

Although the northbound I-75 ramp terminal LOS improves from "E" to "D" based on the average overall delay for the un-signalized intersection in the design year (2045) in the AM peak hour, the actual delay at this terminal will be greater. Compared to the opening year (2025), the eastbound left movement will experience significantly higher movement delays and lower serviced volumes resulting in decreased overall delay for this un-signalized northbound I-75 ramp terminal intersection.

Compared to the opening year (2025) in the PM peak hour, the eastbound and southbound approaches and the overall intersection of New East Bay Road are expected to fail as congestion at the Gibsonton Drive at I-75 ramp terminals will extend back to New East Bay Road. The southbound I-75 ramp terminal is also expected to fail in the PM peak hour.

The intersection at Fern Hill Drive is expected to continue to experience congestion, however, the northbound left and through, southbound left and through, and eastbound right movements see a slight decrease in delay due to upstream metering of vehicles.

Table 5.15: Design Year (2045) Intersection Vehicle Delay and LOS - No-Build Alternative - AM Peak Hour

| Intersection                    | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS            |
|---------------------------------|----------|------------------------|---------------------------|-----------------------------|----------------|
|                                 | EBL      | 18                     | 5                         | 357.6                       | F              |
|                                 | EBT      | 1,526                  | 425                       | 417.8                       | F              |
|                                 | EBR      | 81                     | 24                        | 308.7                       | F              |
|                                 | Approach | 1,625                  | 454                       | 411.4                       | F              |
|                                 | WBL      | 417                    | 284                       | 48.3                        | D              |
|                                 | WBT      | 1,622                  | 1,150                     | 20.4                        | С              |
|                                 | WBR      | 149                    | 112                       | 1.8                         | Α              |
|                                 | Approach | 2,188                  | 1,546                     | 24.2                        | С              |
| New East Bay Road               | NBL      | 85                     | 181                       | 28.7                        | С              |
|                                 | NBT      | 44                     | 47                        | 41.0                        | D              |
|                                 | NBR      | 644                    | 524                       | 81.9                        | F              |
|                                 | Approach | 773                    | 752                       | 66.6                        | Е              |
|                                 | SBL      | 69                     | 67                        | 134.6                       | F              |
|                                 | SBT      | 20                     | 18                        | 110.7                       | F              |
|                                 | SBR      | 9                      | 8                         | 102.1                       | F              |
|                                 | Approach | 98                     | 93                        | 127.2                       | F              |
|                                 | Overall  | 4,684                  | 2,845                     | 100.5                       | F              |
|                                 | EBT      | 2,103                  | 957                       | 100.2                       | F              |
|                                 | EBR      | 136                    | 63                        | 47.0                        | D              |
|                                 | Approach | 2,239                  | 1,020                     | 97.0                        | F              |
|                                 | WBL      | 321                    | 396                       | 361.4                       | F              |
| Carabble and 1.75 Dans Tamain I | WBT      | 1,262                  | 1,239                     | 15.9                        | В              |
| Southbound I-75 Ramp Terminal   | Approach | 1,583                  | 1,635                     | 99.6                        | F              |
|                                 | SBL      | 1,414                  | 589                       | 152.0                       | F              |
|                                 | SBR      | 926                    | 305                       | 3.6                         | Α              |
|                                 | Approach | 2,340                  | 894                       | 101.4                       | F              |
|                                 | Overall  | 6,162                  | 3,549                     | 99.3                        | F              |
|                                 | EBL      | 1,280                  | 159                       | 850.1                       | F              |
|                                 | EBT      | 2,237                  | 1,377                     | 5.5                         | Α              |
|                                 | Approach | 3,517                  | 1,536                     | 92.9                        | F              |
|                                 | WBT      | 1,395                  | 1,514                     | 2.7                         | А              |
|                                 | WBR      | 1,952                  | 1,737                     | 13.6                        | В              |
| Northbound I-75 Ramp Terminal   | Approach | 3,347                  | 3,251                     | 8.5                         | Α              |
|                                 | NBL      | 188                    | 164                       | 19.7                        | С              |
|                                 | NBR      | 444                    | 381                       | 3.4                         | Α              |
|                                 | Approach | 632                    | 545                       | 8.3                         | Α              |
|                                 | Overall  | 7,496                  | 5,332                     | 32.8                        | D <sup>1</sup> |

Table 5.15 (Continued): Design Year (2045) Intersection Vehicle Delay and LOS - No-Build Alternative – AM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 66                     | 36                        | 94.6                        | F   |
|                 | EBT      | 2,447                  | 1,619                     | 3.6                         | Α   |
|                 | EBR      | 168                    | 101                       | 0.7                         | Α   |
|                 | Approach | 2,681                  | 1,756                     | 5.3                         | Α   |
|                 | WBL      | 68                     | 59                        | 91.4                        | F   |
|                 | WBT      | 3,124                  | 3,031                     | 12.2                        | В   |
|                 | WBR      | 3                      | 0                         | 0.0                         | Α   |
|                 | Approach | 3,195                  | 3,090                     | 13.8                        | В   |
| Fern Hill Drive | NBL      | 119                    | 114                       | 77.2                        | E   |
|                 | NBT      | 3                      | 2                         | 78.0                        | E   |
|                 | NBR      | 92                     | 93                        | 30.4                        | С   |
|                 | Approach | 214                    | 209                       | 56.4                        | E   |
|                 | SBL      | 9                      | 11                        | 73.1                        | E   |
|                 | SBT      | 0                      | 0                         | 0.0                         | Α   |
|                 | SBR      | 104                    | 100                       | 61.6                        | E   |
|                 | Approach | 113                    | 111                       | 62.7                        | E   |
|                 | Overall  | 6,203                  | 5,166                     | 13.7                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

<sup>1.</sup> The overall average un-signalized intersection delay decreases because of unserviced EBL volumes in 2045. It is anticipated that this intersection will continue to deteriorate from 2025 No-Build condition, and operate at LOS F with greater delay.

Table 5.16: Design Year (2045) Intersection Vehicle Delay and LOS - No-Build Alternative - PM Peak Hour

| Intersection                      | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                                   | EBL      | 25                     | 2                         | 342.4                       | F   |
|                                   | EBT      | 1,731                  | 179                       | 411.4                       | F   |
|                                   | EBR      | 373                    | 39                        | 293.3                       | F   |
|                                   | Approach | 2,129                  | 220                       | 389.9                       | F   |
|                                   | WBL      | 1,423                  | 724                       | 42.4                        | D   |
|                                   | WBT      | 1,063                  | 566                       | 7.8                         | Α   |
|                                   | WBR      | 112                    | 59                        | 0.9                         | Α   |
|                                   | Approach | 2,598                  | 1,349                     | 26.1                        | С   |
| New East Bay Road                 | NBL      | 107                    | 97                        | 67.6                        | Е   |
|                                   | NBT      | 46                     | 44                        | 73.4                        | Е   |
|                                   | NBR      | 406                    | 384                       | 47.4                        | D   |
|                                   | Approach | 559                    | 525                       | 53.3                        | D   |
|                                   | SBL      | 51                     | 48                        | 111.2                       | F   |
|                                   | SBT      | 76                     | 70                        | 97.8                        | F   |
|                                   | SBR      | 9                      | 10                        | 83.3                        | F   |
|                                   | Approach | 136                    | 128                       | 101.7                       | F   |
|                                   | Overall  | 5,422                  | 2,222                     | 72.9                        | E   |
|                                   | EBT      | 2,000                  | 559                       | 157.1                       | F   |
|                                   | EBR      | 188                    | 53                        | 46.9                        | D   |
|                                   | Approach | 2,188                  | 612                       | 147.6                       | F   |
|                                   | WBL      | 444                    | 93                        | 982.9                       | F   |
| Courtle bound 1.75 Down Townsia d | WBT      | 1,318                  | 828                       | 81.9                        | F   |
| Southbound I-75 Ramp Terminal     | Approach | 1,762                  | 921                       | 172.8                       | F   |
|                                   | SBL      | 1,952                  | 1,009                     | 60.2                        | E   |
|                                   | SBR      | 1,280                  | 517                       | 3.5                         | Α   |
|                                   | Approach | 3,232                  | 1,526                     | 41.0                        | D   |
|                                   | Overall  | 7,182                  | 3,059                     | 102.0                       | F   |
|                                   | EBL      | 926                    | 25                        | 1030.8                      | F   |
|                                   | EBT      | 3,026                  | 1,545                     | 3.9                         | Α   |
|                                   | Approach | 3,952                  | 1,570                     | 20.3                        | С   |
|                                   | WBT      | 1,626                  | 797                       | 32.8                        | D   |
|                                   | WBR      | 1,414                  | 1,204                     | 14.4                        | В   |
| Northbound I-75 Ramp Terminal     | Approach | 3,040                  | 2,001                     | 21.7                        | С   |
|                                   | NBL      | 136                    | 124                       | 36.2                        | E   |
|                                   | NBR      | 321                    | 288                       | 3.3                         | Α   |
|                                   | Approach | 457                    | 412                       | 13.2                        | В   |
| -                                 | Overall  | 7,449                  | 3,983                     | 20.3                        | С   |

Table 5.16 (Continued): Design Year (2045) Intersection Vehicle Delay and LOS - No-Build Alternative – PM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 52                     | 35                        | 97.1                        | F   |
|                 | EBT      | 3,187                  | 1,745                     | 4.2                         | Α   |
|                 | EBR      | 108                    | 54                        | 1.2                         | Α   |
|                 | Approach | 3,347                  | 1,834                     | 5.9                         | Α   |
|                 | WBL      | 56                     | 40                        | 100.6                       | F   |
|                 | WBT      | 2,850                  | 1,831                     | 18.3                        | В   |
|                 | WBR      | 37                     | 19                        | 11.6                        | В   |
|                 | Approach | 2,943                  | 1,890                     | 20.0                        | В   |
| Fern Hill Drive | NBL      | 50                     | 48                        | 84.1                        | F   |
|                 | NBT      | 3                      | 3                         | 74.2                        | E   |
|                 | NBR      | 102                    | 94                        | 35.1                        | D   |
|                 | Approach | 155                    | 145                       | 52.1                        | D   |
|                 | SBL      | 10                     | 10                        | 70.6                        | E   |
|                 | SBT      | 7                      | 9                         | 91.5                        | F   |
|                 | SBR      | 140                    | 130                       | 52.8                        | D   |
|                 | Approach | 157                    | 149                       | 56.3                        | E   |
|                 | Overall  | 6,602                  | 4,018                     | 16.0                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

The CORSIM microsimulation results for intersection vehicle queue lengths within the AOI during the design year (2045) are summarized in **Table 5.17**. The available storage for intersections represents the left or right turn storage bay measured from the stop bar to the taper. The available storage for the offramps is measured from the stop bar to the gore point, with adjustment for deceleration length where applicable. Compared to the opening year (2025) in the AM peak hour, the following movements will now have maximum queues that exceed the available storage lengths: the northbound right and northbound through/left at New East Bay Road, and the westbound through/right at Fern Hill Road. The eastbound through at the northbound I-75 ramp terminal indicates a slight reduction in queue lengths in the AM peak hour. However, this is due to bottlenecking in the system.

Compared to the opening year (2025) in the PM peak hour, the following movements will now have maximum queues that exceed the available storage lengths: the eastbound through, northbound right, and northbound through/ left at New East Bay Road, the westbound through and southbound left at the southbound I-75 ramp terminal, the eastbound through, westbound through, and westbound right at the northbound I-75 ramp terminal, and the westbound through/right at Fern Hill Drive.

Table 5.17: Design Year (2045) Intersection Vehicle Queue Lengths - No-Build Alternative

| Gibsonton                           |          |                              | Off-ramp<br>Deceleration<br>Length                   |                                | Maximum Vehicle<br>Queue Length (Feet) |                                        |         |                                        |  |
|-------------------------------------|----------|------------------------------|------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------|---------|----------------------------------------|--|
| Drive<br>Signalized<br>Intersection | Movement | Existing<br>Storage<br>(Feet | adjustment<br>required<br>(Yes/No - #<br>of<br>Feet) | Available<br>Storage<br>(Feet) | AM Peak                                | Queue<br>extend<br>to I-75<br>mainline | PM Peak | Queue<br>extend<br>to I-75<br>mainline |  |
|                                     | EBL      | 190                          | No                                                   | 190                            | 50                                     | N/A                                    | 50      | N/A                                    |  |
| -                                   | EBT      | 1100                         | No                                                   | 1,100                          | 1,325                                  | N/A                                    | 1,375   | N/A                                    |  |
|                                     | EBR      | 250                          | No                                                   | 250                            | 100                                    | N/A                                    | 225     | N/A                                    |  |
|                                     | WBL      | 530                          | No                                                   | 530                            | 300                                    | N/A                                    | 725     | N/A                                    |  |
| New East Bay<br>Road                | WBT      | 730                          | No                                                   | 730                            | 600                                    | N/A                                    | 375     | N/A                                    |  |
| au                                  | WBR      | 730                          | No                                                   | 730                            | 100                                    | N/A                                    | 50      | N/A                                    |  |
|                                     | NBTL     | 410                          | No                                                   | 410                            | 550                                    | N/A                                    | 500     | N/A                                    |  |
|                                     | NBR      | 390                          | No                                                   | 390                            | 575                                    | N/A                                    | 500     | N/A                                    |  |
|                                     | SBLTR    | 430                          | No                                                   | 430                            | 325                                    | N/A                                    | 375     | N/A                                    |  |
|                                     | EBT      | 730                          | No                                                   | 730                            | 1,625                                  | N/A                                    | 1,600   | N/A                                    |  |
|                                     | EBR      | 520                          | No                                                   | 520                            | 75                                     | N/A                                    | 75      | N/A                                    |  |
| Southbound I-75                     | WBL      | 640                          | No                                                   | 640                            | 850                                    | N/A                                    | 850     | N/A                                    |  |
| Ramp Terminal                       | WBT      | 1950                         | No                                                   | 1,950                          | 2,325                                  | N/A                                    | 2,400   | N/A                                    |  |
|                                     | SBL      | 1810                         | Yes (440')                                           | 1,370                          | 1,650                                  | Yes                                    | 1,650   | Yes                                    |  |
|                                     | SBR      | 1860                         | Yes (440')                                           | 1,420                          | 525                                    | No                                     | 525     | No                                     |  |
|                                     | EBL      | 640                          | No                                                   | 640                            | 875                                    | N/A                                    | 875     | N/A                                    |  |
|                                     | EBT      | 1950                         | No                                                   | 1,950                          | 2,325                                  | N/A                                    | 2,250   | N/A                                    |  |
| Northbound I-75                     | WBT      | 730                          | No                                                   | 730                            | 550                                    | N/A                                    | 1,225   | N/A                                    |  |
| Ramp Terminal                       | WBR      | 730                          | No                                                   | 730                            | 575                                    | N/A                                    | 850     | N/A                                    |  |
|                                     | NBL      | 375                          | No                                                   | 375                            | 275                                    | No                                     | 325     | No                                     |  |
|                                     | NBR      | 2600                         | Yes (440')                                           | 2,500                          | 25                                     | No                                     | 25      | No                                     |  |
|                                     | EBL      | 250                          | No                                                   | 250                            | 225                                    | N/A                                    | 250     | N/A                                    |  |
|                                     | EBT      | 730                          | No                                                   | 730                            | 600                                    | N/A                                    | 650     | N/A                                    |  |
|                                     | EBR      | 215                          | No                                                   | 215                            | 150                                    | N/A                                    | 150     | N/A                                    |  |
| Fern Hill Drive                     | WBL      | 330                          | No                                                   | 330                            | 200                                    | N/A                                    | 175     | N/A                                    |  |
|                                     | WBTR     | 1,170                        | No                                                   | 1,170                          | 1,375                                  | N/A                                    | 1,475   | N/A                                    |  |
|                                     | NBLTR    | 580                          | No                                                   | 580                            | 150                                    | N/A                                    | 175     | N/A                                    |  |
|                                     | SBLTR    | 410                          | No                                                   | 410                            | 200                                    | N/A                                    | 300     | N/A                                    |  |

Note: The available storage lengths for through lanes on Gibsonton Drive are the roadway segment distance between upstream and downstream intersections.

Note: Where vehicle queues exceed the length of the CORSIM link, queue lengths from upstream links are added.

Note: Red highlight indicates that maximum vehicle queue length exceeds available storage length

The CORSIM microsimulation results of the arterial operating speeds estimated for the various roadway segments along Gibsonton Drive for the No-Build Alternative are summarized in **Table 5.18**. Overall travel speeds continue to decrease as there is more congestion. There are some increases to speed in the eastbound direction from the southbound I-75 ramp terminal to the northbound I-75 ramp terminal during the AM peak hour. However, this is a function of decreased serviced volume and not due to

improvements. During the PM peak hour, the westbound direction will experience additional congestion and have an overall LOS of E.

Table 5.18: Design Year (2045) Gibsonton Drive Arterial Speed and LOS - No-Build Alternative

| Gibsonton Drive Arter         | Gibsonton Drive Arterial Roadway Segments |                          |                | AM Peak |                | PM Peak |  |
|-------------------------------|-------------------------------------------|--------------------------|----------------|---------|----------------|---------|--|
| From                          | То                                        | Free Flow<br>Speed (mph) | Speed<br>(mph) | LOS*    | Speed<br>(mph) | LOS*    |  |
| Eastbound                     |                                           |                          |                |         |                |         |  |
| West of New East Bay Road     | New East Bay Road                         | 45                       | 2              | F       | 2              | F       |  |
| New East Bay Road             | Southbound I-75 Ramp Terminal             | 45                       | 3              | F       | 3              | F       |  |
| Southbound I-75 Ramp Terminal | Northbound I-75 Ramp Terminal             | 45                       | 16             | Е       | 23             | D       |  |
| Northbound I-75 Ramp Terminal | Fern Hill Drive                           | 45                       | 30             | С       | 29             | С       |  |
| Fern Hill Drive               | East of Fern Hill Drive                   | 45                       | 31             | В       | 30             | С       |  |
| Total                         |                                           |                          | 22             | D       | 25             | С       |  |
| Westbound                     |                                           |                          |                |         |                |         |  |
| East of Fern Hill Drive       | Fern Hill Drive                           | 45                       | 12             | F       | 10             | F       |  |
| Fern Hill Drive               | Northbound I-75 Ramp Terminal             | 45                       | 19             | D       | 10             | F       |  |
| Northbound I-75 Ramp Terminal | Southbound I-75 Ramp Terminal             | 45                       | 24             | C       | 15             | E       |  |
| Southbound I-75 Ramp Terminal | New East Bay Road                         | 45                       | 19             | D       | 17             | E       |  |
| New East Bay Road             | West of New East Bay Road                 | 45                       | 37             | Α       | 38             | Α       |  |
| Total                         |                                           |                          | 20             | D       | 14             | E       |  |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that the speed does not meet the LOS target, D

## 5.2.2 Build Alternative

The Build Alternative includes the various interchange improvements described previously in **Section 4**. These geometric modifications will improve capacity, particularly at the southbound off-ramp diverge area where the addition of an exit lane for southbound I-75, as exiting vehicles will be able to pre-position more effectively. Therefore, the car following sensitivity multiplier was reset to a default value of 100 percent in the CORSIM model. This section provides a summary of the operational results for the Build Alternative; full results are available in **Appendix L**.

The CORSIM microsimulation results and year of failure if applicable for the I-75 basic freeway segments and ramp merge/diverge for the Build Alternative are shown in **Table 5.19**, **Figure 5.5**, and **Figure 5.6**.

In the design year (2045), southbound I-75 segments, north of Gibsonton Drive and Off-ramp to Gibsonton Drive, still fail during the AM and PM peak hour period. This is due to the estimated demand volume-to-capacity exceeding 1.0 during the peak hours of design year (2045). However, the density is reduced and more vehicles are being serviced on these failing segments during both AM and PM peak hours, as compared to the No-Build 2045 condition.

Overall, serviced vehicles on southbound I-75 increase during both the AM and PM peak hours. No new segments of southbound I-75 fail due to the improvements made on Gibsonton Drive.

It is noted that southbound I-75 south of Gibsonton Drive improves from LOS E to LOS D between 2025 and 2045 under the Build Alternative. A review of queue lengths, service volumes, and delay at the southbound ramp terminal indicates that this is not due to improvements at the ramp terminal, but it is likely due to addition of managed lane in the design year (2045).

Along northbound I-75, the segment north of Gibsonton Drive degrades from a D under the No-Build Alternative to an E under the Build Alternative. The northbound I-75 from managed lane ramp to eastbound Gibsonton Drive on-ramp also fails under the Build Alternative. However, in both cases serviced volume increased and the expected year of failure is 2040 or beyond.

The mainline I-75 design as presented in this IMR represents the current PD&E concept that has been displayed for public review and comment. During this effort, changes to this concept will not be made. Operational shortcomings will be further addressed in subsequent IAR efforts as the FDOT District 7 Managed Lanes projects progress.

Table 5.19 Design Year (2045) I-75 Basic Freeway Segments and Ramps Merge/Diverge Area Vehicle Density and LOS – Build Alternative

| Segment                                                                         | Туре             | No<br>of<br>Lanes | Time<br>Period | Demand<br>Volumes<br>(vph) | Simulated<br>Volumes<br>(vph) | Speed<br>(mph) | Estimated<br>Density<br>(pc/mi/ln) | LOS* | YOF**             |
|---------------------------------------------------------------------------------|------------------|-------------------|----------------|----------------------------|-------------------------------|----------------|------------------------------------|------|-------------------|
| Northbound I-75                                                                 |                  |                   |                |                            |                               |                |                                    |      |                   |
| South of Gibsonton Drive                                                        | Basic            | 3                 | AM             | 8,044                      | 6,679                         | 64             | 33.4                               | D    | NA                |
| South of dipsoliton prive                                                       | Freeway          | 5                 | PM             | 6,774                      | 6,589                         | 64             | 32.9                               | D    | NA                |
| Off-Ramp to Gibsonton                                                           | Major            | 3                 | AM             | 8,044                      | 6,679                         | 62             | 25.7                               | C    | NA                |
| Drive                                                                           | Diverge          | J                 | PM             | 6,774                      | 6,593                         | 62             | 25.3                               | С    | NA                |
| Gibsonton Drive Off-Ramp                                                        | Basic            | 3                 | AM             | 7,412                      | 6,141                         | 62             | 31.8                               | D    | NA                |
| to Managed Lane Ramp                                                            | Freeway          |                   | PM             | 6,317                      | 6,125                         | 62             | 31.6                               | D    | NA                |
| Ramp from Managed Lane                                                          | Ramp             | 3                 | AM             | 7,724                      | 6,434                         | 63             | 24.6                               | С    | NA                |
| namp irom managed Lane                                                          | Merge            | J                 | PM             | 6,931                      | 6,709                         | 62             | 26.3                               | D    | NA                |
| Managed Lane Ramp to                                                            | Basic            | 2                 | AM             | 7,724                      | 6,434                         | 63             | 33.0                               | D    | NA                |
| Eastbound Gibsonton Drive On-Ramp                                               | Freeway          | 3                 | PM             | 6,931                      | 6,710                         | 61             | 35.5                               | Е    | 20431             |
| On-Ramp from Eastbound                                                          | Ramp             | 4                 | AM             | 9,004                      | 7,666                         | 63             | 29.2                               | D    | NA                |
| Gibsonton Drive                                                                 | Merge            | 4                 | PM             | 7,857                      | 7,858                         | 63             | 30.0                               | D    | NA                |
| Eastbound Gibsonton Drive<br>On-Ramp to Westbound<br>Gibsonton Drive<br>On-Ramp | Basic<br>Freeway |                   | AM             | 9,004                      | 7,667                         | 65             | 28.5                               | D    | NA                |
|                                                                                 |                  | 4                 | PM             | 7,857                      | 7,858                         | 65             | 29.3                               | D    | NA                |
| On-Ramp from Westbound                                                          | Ramp             | 4                 | AM             | 10,956                     | 9,304                         | 61             | 23.7                               | С    | NA                |
| Gibsonton Drive                                                                 | Merge            | 4                 | PM             | 9,271                      | 9,095                         | 61             | 23.1                               | С    | NA                |
| On-Ramp from Westbound<br>Gibsonton Drive (Second                               | Ramp<br>Merge    | 4                 | AM             | 10,956                     | 9,304                         | 58             | 31.7                               | D    | NA                |
| Merge Area)                                                                     |                  | 4                 | PM             | 9,271                      | 9,097                         | 59             | 30.6                               | D    | NA                |
|                                                                                 |                  |                   | AM             | 10,956                     | 9,304                         | 60             | 37.6                               | E    | 2037 <sup>1</sup> |
| North of Gibsonton Drive                                                        | Basic<br>Freeway | 4                 | PM             | 9,271                      | 9,096                         | 61             | 36.3                               | E    | 2042 <sup>1</sup> |
| Southbound I-75                                                                 |                  |                   |                |                            |                               |                |                                    |      |                   |
|                                                                                 | Pasis            |                   | AM             | 9,096                      | 8,457                         | 33             | 63.6                               | F    | 20271             |
| North of Gibsonton Drive                                                        | Basic<br>Freeway | 4                 | PM             | 10,703                     | 8,519                         | 28             | 76.2                               | F    | See note<br>2     |
| Off-Ramp to Gibsonton                                                           | Major            | 4                 | AM             | 9,096                      | 8,440                         | 44             | 47.5                               | F    | See note          |
| Drive                                                                           | Diverge          | 4                 | PM             | 10,703                     | 8,512                         | 46             | 46.2                               | F    | See note          |

| Segment                        | Туре    | No<br>of<br>Lanes | Time<br>Period | Demand<br>Volumes<br>(vph) | Simulated<br>Volumes<br>(vph) | Speed<br>(mph) | Estimated<br>Density<br>(pc/mi/ln) | LOS* | YOF** |
|--------------------------------|---------|-------------------|----------------|----------------------------|-------------------------------|----------------|------------------------------------|------|-------|
| Gibsonton Drive Off-Ramp       | Basic   | _                 | AM             | 6,756                      | 6,178                         | 61             | 32.7                               | D    | NA    |
| to Gibsonton Drive On-<br>Ramp | Freeway | 3                 | PM             | 7,471                      | 5,914                         | 62             | 30.8                               | D    | NA    |
| On-Ramp from Gibsonton         | Ramp    | 3                 | AM             | 7,213                      | 6,657                         | 57             | 29.6                               | D    | NA    |
| Drive                          | Merge   | 3                 | PM             | 8,103                      | 6,547                         | 57             | 29.2                               | D    | NA    |
| South of Gibsonton Drive       | Basic   | 3                 | AM             | 7,213                      | 6,647                         | 63             | 32.1                               | D    | NA    |
|                                | Freeway | 3                 | PM             | 8,103                      | 6,543                         | 64             | 31.5                               | D    | NA    |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

- 1. YOF analyses are based on Build 2045 and Build 2025 analysis results for failure segments
- 2. These failures reported are outside of the scope of this interchange project, as they are on the I-75 mainline. These are existing deficiencies and are expected to be addressed with the future construction of the express lanes. The date of construction of the express lanes is unknown at this time but is anticipated to be constructed between 2025 and 2045. However, due to growth and capacity constraints, this will return to a failing condition by 2045.
- 3. The SB off-ramp improvements do not improve the existing diverge failing condition for either 2025 or 2045 build conditions. Additional improvements were not explored due to r/w constraints that would have caused environmental impacts. However, the widening of the ramp improves the queue from the no-build "impacting mainline I-75" to the build "not impacting mainline I-75".

<sup>\*\*</sup>YOF indicates Year of Failure



Figure 5.5: Design Year (2045) Build Alternative CORSIM Freeway MOEs

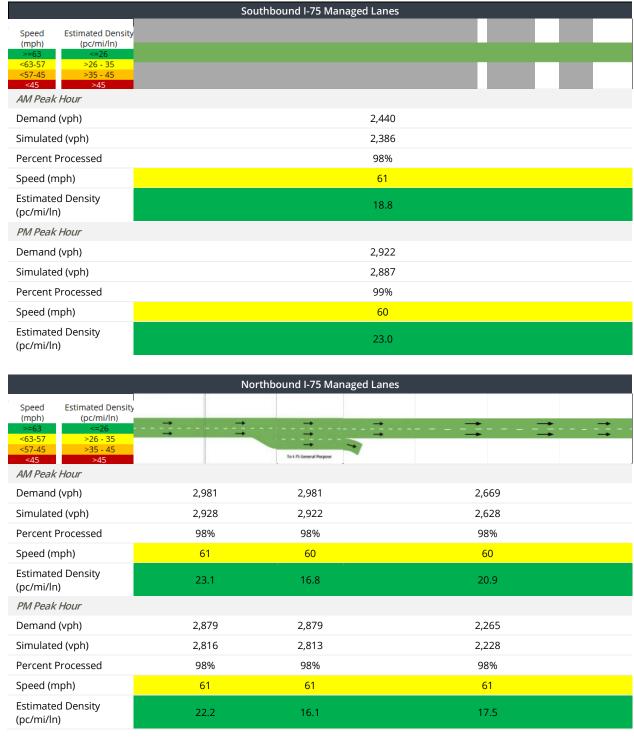



Figure 5.6: Design Year (2045) Build Alternative CORSIM Managed Lanes MOEs

Volume-to-capacity ratios for each ramp are summarized in **Table 5.20**. This analysis indicates that the ramps will operate under capacity. This also suggests that poor operations on southbound I-75 north of Gibsonton Drive are due to a lack of capacity within the I-75 freeway segment between US 301 and Gibsonton Drive in the design year (2045) even with the implementation of managed lanes on I-75.

Table 5.20: Design Year (2045) I-75 Ramps Capacity Check - Build Alternative

| I-75 On and Off Ramp Location | No. of<br>Lanes    | Ramp Free Flow<br>Speed (mph) | Capacity<br>(veh/hr) | Time<br>Period | Demand<br>Volume<br>(veh/hr) | Volume to<br>Capacity Ratio |
|-------------------------------|--------------------|-------------------------------|----------------------|----------------|------------------------------|-----------------------------|
| Northbound I-75               |                    |                               |                      |                |                              |                             |
| Off Ramp to Cibcopton Drive   | 2                  | 45                            | 4200                 | AM             | 632                          | 0.15                        |
| Off-Ramp to Gibsonton Drive   | 2                  | 45                            | 4200                 | PM             | 457                          | 0.11                        |
| On-Ramp from Eastbound        | rom Eastbound 1 45 |                               | 2100                 | AM             | 1,280                        | 0.61                        |
| Gibsonton Drive               | ı                  | 45                            | 2100                 | PM             | 926                          | 0.44                        |
| On-Ramp from Westbound        | 2                  | 45                            | 4200                 | AM             | 1,952                        | 0.46                        |
| Gibsonton Drive               | 2                  | 45                            | 4200                 | PM             | 1,414                        | 0.34                        |
| Southbound I-75               |                    |                               |                      |                |                              |                             |
| Off Damp to Cibcopton Drive   | 2                  | ΔE                            | 4200                 | AM             | 2,340                        | 0.56                        |
| Off-Ramp to Gibsonton Drive   | 2                  | 45                            | 4200                 | PM             | 3,232                        | 0.77                        |
| On Ramp from Cibconton Drive  | 1                  | ΛE                            | 2100                 | AM             | 457                          | 0.22                        |
| On-Ramp from Gibsonton Drive  |                    | 45                            | 2100                 | PM             | 632                          | 0.30                        |

The CORSIM microsimulation results of the I-75 ramp terminals and cross-streets at Gibsonton Drive for the design year (2045) are summarized in **Table 5.21** and **Table 5.22**. During the design year (2045), when comparing the No-Build and Build Alternatives, there are improvements throughout the network with serviced vehicles increasing at nearly every movement as congestion is relieved. During both the AM and PM peak hours there are improvements to delay and LOS, particularly at the I-75 ramp terminals which are no longer experiencing a failing LOS.

Some increase in delay at specific locations can be expected as upstream bottlenecks are alleviated and vehicle throughput is improved, such as the westbound left movement from Gibsonton Drive to southbound New East Bay Road. No additional intersections fail during the AM or PM peak hour.

Throughout the network, nearly any increase in delay from the No-Build Alternative, is accompanied by an increase in serviced volume and nearly any decrease in serviced volume is accompanied by a decrease in delay. These changes are due to either alleviating upstream or downstream bottlenecks, or by changes in signal timings to prioritize clearance of the DDI to avoid any impacts to the I-75 mainline.

The only locations that have both an increase in delay and a decrease in serviced volume include the northbound left and northbound through movement at New East Bay Road which does already fail during the PM peak hour and the northbound through movement at Fern Hill Drive during the PM peak hour which only services three vehicles. Nearly, or all, of the vehicles at these locations are being serviced still, and improvements to these locations will adversely affect operations elsewhere in the network. It should be noted, although there are specific movements that do not meet LOS targets at New East Bay Road intersection, the overall intersection delay does meet LOS targets.

Table 5.21: Design Year (2045) Intersection Vehicle Delay and LOS – Build Alternative – AM Peak Hour

| Intersection                    | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|---------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                                 | EBL      | 18                     | 14                        | 71.7                        | Е   |
|                                 | EBT      | 1,526                  | 1,494                     | 23.5                        | С   |
|                                 | EBR      | 81                     | 80                        | 3.7                         | Α   |
|                                 | Approach | 1,625                  | 1,588                     | 22.9                        | С   |
|                                 | WBL      | 417                    | 444                       | 69.5                        | Е   |
|                                 | WBT      | 1,622                  | 1,731                     | 7.4                         | Α   |
|                                 | WBR      | 149                    | 172                       | 0.6                         | Α   |
|                                 | Approach | 2,188                  | 2,347                     | 18.6                        | В   |
| New East Bay Road               | NBL      | 85                     | 86                        | 58.5                        | Е   |
|                                 | NBT      | 44                     | 46                        | 59.6                        | Е   |
|                                 | NBR      | 644                    | 622                       | 21.5                        | С   |
|                                 | Approach | 773                    | 754                       | 28.1                        | С   |
|                                 | SBL      | 69                     | 68                        | 66.2                        | Е   |
|                                 | SBT      | 20                     | 19                        | 65.9                        | Е   |
|                                 | SBR      | 9                      | 9                         | 46.9                        | D   |
|                                 | Approach | 98                     | 96                        | 64.3                        | Е   |
|                                 | Overall  | 4,684                  | 4,785                     | 22.5                        | С   |
|                                 | EBT      | 2,103                  | 2,065                     | 13.2                        | В   |
| _                               | EBR      | 136                    | 125                       | 6.2                         | Α   |
| _                               | Approach | 2,239                  | 2,190                     | 12.8                        | В   |
| _                               | WBL      | 321                    | 360                       | 4.8                         | Α   |
| -                               | WBT      | 1,262                  | 1,438                     | 38.4                        | D   |
| Southbound I-75 Ramp Terminal — | Approach | 1,583                  | 1,798                     | 31.7                        | С   |
|                                 | SBL      | 1,414                  | 1,382                     | 23.2                        | С   |
| _                               | SBR      | 926                    | 901                       | 8.8                         | Α   |
| _                               | Approach | 2,340                  | 2,283                     | 17.5                        | В   |
| _                               | Overall  | 6,162                  | 6,271                     | 19.9 <sup>1</sup>           | В   |
|                                 | EBL      | 1,280                  | 1,242                     | 17.3                        | В   |
| _                               | EBT      | 2,237                  | 2,203                     | 22.3                        | С   |
| _                               | Approach | 3,517                  | 3,445                     | 20.5                        | С   |
| _                               | WBT      | 1,395                  | 1,634                     | 27.1                        | С   |
| _                               | WBR      | 1,952                  | 1,653                     | 9.4                         | Α   |
| Northbound I-75 Ramp Terminal — | Approach | 3,347                  | 3,287                     | 18.2                        | В   |
|                                 | NBL      | 188                    | 164                       | 19.8                        | В   |
| _                               | NBR      | 444                    | 373                       | 34.5                        | С   |
| _                               | Approach | 632                    | 537                       | 30.0                        | С   |
| _                               | Overall  | 7,496                  | 7,269                     | 20.2                        | С   |

Table 5.21 (Continued): Design Year (2045) Intersection Vehicle Delay and LOS - Build Alternative - AM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 66                     | 76                        | 80.0                        | F   |
|                 | EBT      | 2,447                  | 2,345                     | 4.2                         | Α   |
|                 | EBR      | 168                    | 156                       | 0.3                         | Α   |
|                 | Approach | 2,681                  | 2,577                     | 6.2                         | Α   |
|                 | WBL      | 68                     | 62                        | 67.0                        | E   |
|                 | WBT      | 3,124                  | 3,062                     | 15.2                        | В   |
|                 | WBR      | 3                      | 0                         | 0.0                         | Α   |
|                 | Approach | 3,195                  | 3,124                     | 16.2                        | В   |
| Fern Hill Drive | NBL      | 119                    | 119                       | 65.6                        | E   |
|                 | NBT      | 3                      | 2                         | 57.8                        | Е   |
|                 | NBR      | 92                     | 89                        | 14.9                        | В   |
|                 | Approach | 214                    | 210                       | 44.0                        | D   |
|                 | SBL      | 9                      | 10                        | 68.8                        | Е   |
|                 | SBT      | 0                      | 0                         | 0.0                         | Α   |
|                 | SBR      | 104                    | 100                       | 35.2                        | D   |
|                 | Approach | 113                    | 110                       | 38.2                        | D   |
|                 | Overall  | 6,203                  | 6,021                     | 13.3                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

<sup>1. 2045</sup> Build condition delay results being reported are better than 2025 Build condition for the following reasons:

More efficient eastbound-westbound thru-traffic movment along the corridor in 2045 because of using different optimized cycle length and off-set at adjacent intersections from 2025 model, and

<sup>•</sup> Slightly different turning movement percentages between 2025 and 2045

Table 5.22: Design Year (2045) Intersection Vehicle Delay and LOS – Build Alternative – PM Peak Hour

| Intersection                  | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|-------------------------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                               | EBL      | 25                     | 22                        | 73.9                        | Е   |
|                               | EBT      | 1,731                  | 1,638                     | 62.7                        | Е   |
|                               | EBR      | 373                    | 375                       | 30.0                        | С   |
|                               | Approach | 2,129                  | 2,035                     | 56.8                        | Е   |
|                               | WBL      | 1,423                  | 1,300                     | 69.3                        | Е   |
|                               | WBT      | 1,063                  | 989                       | 5.9                         | Α   |
|                               | WBR      | 112                    | 94                        | 0.6                         | Α   |
|                               | Approach | 2,598                  | 2,383                     | 40.3                        | D   |
| New East Bay Road             | NBL      | 107                    | 97                        | 77.1                        | Е   |
|                               | NBT      | 46                     | 44                        | 76.9                        | Е   |
|                               | NBR      | 406                    | 388                       | 11.9                        | В   |
|                               | Approach | 559                    | 529                       | 29.3                        | С   |
|                               | SBL      | 51                     | 49                        | 110.7                       | F   |
|                               | SBT      | 76                     | 73                        | 121.7                       | F   |
|                               | SBR      | 9                      | 10                        | 98.7                        | F   |
|                               | Approach | 136                    | 132                       | 115.9                       | F   |
|                               | Overall  | 5,422                  | 5,079                     | 47.7                        | D   |
|                               | EBT      | 2,000                  | 1,909                     | 7.9                         | Α   |
|                               | EBR      | 188                    | 178                       | 6.3                         | Α   |
|                               | Approach | 2,188                  | 2,087                     | 7.8                         | Α   |
|                               | WBL      | 444                    | 443                       | 5.0                         | Α   |
| Southbound I-75 Ramp Terminal | WBT      | 1,318                  | 1,363                     | 16.5                        | В   |
| -                             | Approach | 1,762                  | 1,806                     | 13.6                        | В   |
|                               | SBL      | 1,952                  | 1,572                     | 17.3                        | В   |
|                               | SBR      | 1,280                  | 1,015                     | 10.1                        | В   |
|                               | Approach | 3,232                  | 2,587                     | 14.4                        | В   |
|                               | Overall  | 7,182                  | 6,480                     | 12.1                        | В   |
|                               | EBL      | 926                    | 1,147                     | 7.4                         | Α   |
|                               | EBT      | 3,026                  | 2,340                     | 12.2                        | В   |
|                               | Approach | 3,952                  | 3,487                     | 10.6                        | В   |
|                               | WBT      | 1,626                  | 1,665                     | 44.0                        | D   |
| Northbound I-75 Ramp Terminal | WBR      | 1,414                  | 1,224                     | 7.8                         | Α   |
| Morthbound 1-75 Kamp Terminal | Approach | 3,040                  | 2,889                     | 28.7                        | С   |
|                               | NBL      | 136                    | 137                       | 18.0                        | В   |
|                               | NBR      | 321                    | 316                       | 35.7                        | D   |
|                               | Approach | 457                    | 453                       | 30.4                        | С   |
|                               | Overall  | 7,449                  | 6,829                     | 19.6                        | В   |

Table 5.22 (Continued): Design Year (2045) Intersection Vehicle Delay and LOS - Build Alternative - PM Peak Hour

| Intersection    | Movement | Demand<br>Volume (vph) | Simulated<br>Volume (vph) | Movement Delay<br>(sec/veh) | LOS |
|-----------------|----------|------------------------|---------------------------|-----------------------------|-----|
|                 | EBL      | 52                     | 53                        | 77.6                        | E   |
|                 | EBT      | 3,187                  | 2,545                     | 16.5                        | В   |
|                 | EBR      | 108                    | 80                        | 1.5                         | Α   |
|                 | Approach | 3,347                  | 2,678                     | 17.3                        | В   |
|                 | WBL      | 56                     | 59                        | 73.6                        | E   |
|                 | WBT      | 2,850                  | 2,702                     | 6.2                         | Α   |
|                 | WBR      | 37                     | 29                        | 1.9                         | Α   |
|                 | Approach | 2,943                  | 2,790                     | 7.6                         | Α   |
| Fern Hill Drive | NBL      | 50                     | 49                        | 70.3                        | E   |
|                 | NBT      | 3                      | 4                         | 67.8                        | E   |
|                 | NBR      | 102                    | 94                        | 18.6                        | В   |
|                 | Approach | 155                    | 147                       | 37.2                        | D   |
|                 | SBL      | 10                     | 10                        | 79.7                        | E   |
|                 | SBT      | 7                      | 8                         | 92.4                        | F   |
|                 | SBR      | 140                    | 130                       | 19.4                        | В   |
|                 | Approach | 157                    | 148                       | 27.4                        | С   |
|                 | Overall  | 6,602                  | 5,763                     | 13.4                        | В   |

<sup>\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made, but the equivalent HCM LOS derived from CORSIM is provided for reference purposes.

Note: Red highlight indicates that the delay does not meet the LOS target, D

The CORSIM microsimulation vehicle queue length results for intersections within the AOI for the design year (2045) are summarized in **Table 5.23**. The available storage for intersections represents the left or right turn storage bay measured from the stop bar to the taper. The available storage for the off-ramps is measured from the stop bar to the gore point, with adjustment for deceleration length where applicable. During the design year (2045), compared to the No-Build Alternative, queue lengths are improved, and no queues exceed the available storage lengths.

Table 5.23: Design Year (2045) Intersection Vehicle Queue Lengths - Build Alternative

|                                 |          |                   | Off-ramp<br>Deceleration                                       |                                |            | Maximum Vehicle Queue<br>Length (Feet) |            |                                        |
|---------------------------------|----------|-------------------|----------------------------------------------------------------|--------------------------------|------------|----------------------------------------|------------|----------------------------------------|
| Gibsonton Drive<br>Intersection | Movement | Storage<br>(Feet) | Length<br>adjustment<br>required<br>(Yes/No - #<br>of<br>Feet) | Available<br>Storage<br>(Feet) | AM<br>Peak | Queue<br>extend to<br>I-75<br>mainline | PM<br>Peak | Queue<br>extend<br>to I-75<br>mainline |
|                                 | EBL      | 190               | No                                                             | 190                            | 75         | N/A                                    | 100        | N/A                                    |
|                                 | EBT      | 1,100             | No                                                             | 1,100                          | 475        | N/A                                    | 925        | N/A                                    |
|                                 | EBR      | 250               | No                                                             | 250                            | 50         | N/A                                    | 250        | N/A                                    |
|                                 | WBL      | 1,300             | No                                                             | 1,300                          | 375        | N/A                                    | 800        | N/A                                    |
| New East Bay Road               | WBT      | 1,780             | No                                                             | 1,780                          | 375        | N/A                                    | 275        | N/A                                    |
|                                 | WBR      | 1,780             | No                                                             | 1,780                          | 75         | N/A                                    | 50         | N/A                                    |
|                                 | NBTL     | 410               | No                                                             | 410                            | 250        | N/A                                    | 300        | N/A                                    |
|                                 | NBR      | 390               | No                                                             | 390                            | 325        | N/A                                    | 200        | N/A                                    |
|                                 | SBLTR    | 430               | No                                                             | 430                            | 200        | N/A                                    | 350        | N/A                                    |
|                                 | EBT      | 1,780             | No                                                             | 1,780                          | 525        | N/A                                    | 350        | N/A                                    |
|                                 | EBR      | 530               | No                                                             | 530                            | 25         | N/A                                    | 25         | N/A                                    |
| Southbound I-75                 | WBL      | 900               | No                                                             | 900                            | 150        | N/A                                    | 150        | N/A                                    |
| Ramp Terminal                   | WBT      | 900               | No                                                             | 900                            | 700        | N/A                                    | 725        | N/A                                    |
|                                 | SBL      | 1990              | Yes (440')                                                     | 1,550                          | 550        | No                                     | 550        | No                                     |
|                                 | SBR      | 1970              | Yes (440')                                                     | 1,530                          | 600        | No                                     | 600        | No                                     |
|                                 | EBL      | 900               | No                                                             | 900                            | 475        | N/A                                    | 75         | N/A                                    |
|                                 | EBT      | 900               | No                                                             | 900                            | 900        | N/A                                    | 550        | N/A                                    |
| Northbound I-75                 | WBT      | 1,810             | No                                                             | 1,810                          | 475        | N/A                                    | 625        | N/A                                    |
| Ramp Terminal                   | WBR      | 1,810             | No                                                             | 1,810                          | 0          | N/A                                    | 50         | N/A                                    |
|                                 | NBL      | 2140              | No                                                             | 1,700                          | 150        | No                                     | 125        | No                                     |
|                                 | NBR      | 2120              | Yes (440')                                                     | 1,680                          | 275        | No                                     | 250        | No                                     |
|                                 | EBL      | 420               | No                                                             | 420                            | 175        | N/A                                    | 150        | N/A                                    |
|                                 | EBT      | 1,810             | No                                                             | 1,810                          | 225        | N/A                                    | 950        | N/A                                    |
| Fern Hill Drive                 | EBR      | 420               | No                                                             | 420                            | 75         | N/A                                    | 75         | N/A                                    |
|                                 | WBL      | 350               | No                                                             | 350                            | 175        | N/A                                    | 150        | N/A                                    |
|                                 | WBTR     | 580               | No                                                             | 580                            | 500        | N/A                                    | 400        | N/A                                    |
|                                 | NBL      | 200               | No                                                             | 200                            | 125        | N/A                                    | 75         | N/A                                    |
|                                 | NBT      | 580               | No                                                             | 580                            | 25         | N/A                                    | 25         | N/A                                    |
|                                 | NBR      | 240               | No                                                             | 240                            | 150        | N/A                                    | 150        | N/A                                    |
|                                 | SBTL     | 410               | No                                                             | 410                            | 100        | N/A                                    | 200        | N/A                                    |
|                                 | SBR      | 200               | No                                                             | 200                            | 75         | N/A                                    | 75         | N/A                                    |

Note: The available storage lengths for through lanes on Gibsonton Drive are the roadway segment distance between upstream and downstream intersections.

Note: Where vehicle queues exceed the length of the CORSIM link, queue lengths from upstream links are added.

Note: Red highlight indicates that maximum vehicle queue length exceeds available storage length

January, 2023

The CORSIM microsimulation results of the arterial operating speeds and associated year of failure if applicable for the various roadway segments along Gibsonton Drive for the design year (2045) are summarized in **Table 5.24**. During the design year (2045), the Build Alternative improves travel speeds on both eastbound and westbound Gibsonton Drive during the AM peak hour. In the eastbound direction, the segment from west of New East Bay Road to New East Bay Road still fails to meet the LOS target D in both the AM and PM peak hours, however the speeds are increased compared to the No-Build Alternative. Additionally, in the westbound direction, the segment from East of Fern Hill Drive to Fern Hill Drive fails to meet the LOS target D in the AM peak hour but shows an increase in speed compared to the No-Build Alternative.

Table 5.24: Design Year (2045) Gibsonton Drive Arterial Speed and LOS - Build Alternative

| Gibsonton Drive Arterial Roadway Segments |                                  | Free Flow       | AM Peak        |       |      | PM Peak        |       |      |
|-------------------------------------------|----------------------------------|-----------------|----------------|-------|------|----------------|-------|------|
| From                                      | То                               | Speed*<br>(mph) | Speed<br>(mph) | LOS** | YOF  | Speed<br>(mph) | LOS** | YOF  |
| Eastbound                                 |                                  |                 |                |       |      |                |       |      |
| West of New East Bay<br>Road              | New East Bay Road                | 45              | 15             | E     | 2020 | 8              | F     | 2020 |
| New East Bay Road                         | Southbound I-75<br>Ramp Terminal | 45              | 35             | В     | NA   | 37             | Α     | NA   |
| Southbound I-75 Ramp<br>Terminal          | Northbound I-75<br>Ramp Terminal | 35              | 15             | D     | NA   | 20             | С     | NA   |
| Northbound I-75 Ramp<br>Terminal          | Fern Hill Drive                  | 45              | 30             | В     | NA   | 23             | D     | NA   |
| Fern Hill Drive                           | East of Fern Hill<br>Drive       | 45              | 37             | Α     | NA   | 34             | В     | NA   |
| Total                                     |                                  |                 | 23             | С     |      | 24             | С     |      |
| Westbound                                 |                                  |                 |                |       |      |                |       |      |
| East of Fern Hill Drive                   | Fern Hill Drive                  | 45              | 14             | F     | 2020 | 22             | D     | NA   |
| Fern Hill Drive                           | Northbound I-75<br>Ramp Terminal | 45              | 23             | D     | NA   | 31             | В     | NA   |
| Northbound I-75 Ramp<br>Terminal          | Southbound I-75<br>Ramp Terminal | 35              | 17             | D     | NA   | 17             | D     | NA   |
| Southbound I-75 Ramp<br>Terminal          | New East Bay Road                | 45              | 24             | С     | NA   | 20             | D     | NA   |
| New East Bay Road                         | West of New East<br>Bay Road     | 45              | 37             | Α     | NA   | 39             | Α     | NA   |
| Total                                     |                                  |                 | 21             | D     |      | 22             | D     |      |

<sup>\*</sup> Free-flow speed between Southbound I-75 Ramp Terminal and Northbound I-75 Ramp Terminal is lowered by 10 mph, based on FDOT Development Design Criteria: D217 Diverging Diamond Interchanges (Revised on 4/1/2022)

Note: Red highlight indicates that the speed does not meet the LOS target D

<sup>\*\*</sup>A direct comparison of CORSIM MOEs to HCM LOS cannot be made. LOS is determined from Exhibit 16-3 of the HCM, 6th Edition.

#### **5.3 Alternatives Comparison of Network MOEs**

In the preceding sections, MOEs were summarized for the mainline basic segments, weaving sections, ramp merge and diverge areas; arterial roadway segments; and intersections at ramp terminals and cross-streets under both the No-Build and Build Alternatives for the opening year (2025) and design year (2045) traffic conditions. This section will provide a comparative basis for the alternatives to illustrate the operational benefits of the Build Alternative through comparison of CORSIM network wide MOEs, shown in **Table 5.25**. The benefits shown here are for the entire four-hour peak periods. Comparison of the No-Build and Build Alternatives presented in this IMR indicate that the Build Alternative shows benefits in opening year (2025) and in design year (2045).

During the opening year (2025) the average speed increases by 80.5 percent during the AM peak period and by 23.5 percent during the PM peak period. The vehicle miles traveled (under static demand volumes) increases by 21.9 percent during the AM peak period and 3.9 percent during the PM peak period. Latent demand will decrease by 91.4 percent during the AM peak period and by 95.3 percent during the PM peak period.

During the design year (2045), the average speed increases by 37.1 percent during the AM peak period and by 44.8 percent during the PM peak period. The benefits of vehicles serviced is significant with an increase in vehicle miles traveled (under static demand volumes) of 31.3 percent during the AM peak period and 23.8 percent during the PM peak period. Latent demand will decrease by 80.0 percent during the AM peak period and by 91.5 percent during the PM peak period.

Table 5.25: Comparison of Network-Wide CORSIM MOEs for Opening Year (2025) and Design Year (2045) during AM and PM Peak Hour Periods

| Network-Wide<br>MOE                      | Analysis       | Ор                      | ening Year (20)      | 25)             | Design Year (2045)      |                      |                 |  |
|------------------------------------------|----------------|-------------------------|----------------------|-----------------|-------------------------|----------------------|-----------------|--|
|                                          | Time<br>Period | No-Build<br>Alternative | Build<br>Alternative | %<br>Difference | No-Build<br>Alternative | Build<br>Alternative | %<br>Difference |  |
| Vehicle Miles<br>Traveled<br>(veh-miles) | AM             | 338,022                 | 412,070              | 21.9%           | 411,013                 | 539,661              | 31.3%           |  |
|                                          | PM             | 399,953                 | 415,387              | 3.9%            | 429,142                 | 531,071              | 23.8%           |  |
| Travel Time Total<br>(hours)             | AM             | 9,643                   | 6,500                | -32.6%          | 9,774                   | 9,340                | -4.4%           |  |
|                                          | PM             | 9,665                   | 8,130                | -15.9%          | 12,961                  | 11,085               | -14.5%          |  |
| Speed Average<br>(mph)                   | AM             | 35.1                    | 63.4                 | 80.5%           | 42.1                    | 57.8                 | 37.1%           |  |
|                                          | PM             | 41.4                    | 51.1                 | 23.5%           | 33.1                    | 47.9                 | 44.8%           |  |
| Total Travel Delay                       | AM             | 4,802                   | 576                  | -88.0%          | 3,719                   | 1,420                | -61.8%          |  |
| (hours)                                  | PM             | 3,916                   | 2,162                | -44.8%          | 6,683                   | 3,286                | -50.8%          |  |
| Latent Demand<br>(veh)                   | AM             | 12,090                  | 1,036                | -91.4%          | 16,889                  | 3,385                | -80.0%          |  |
|                                          | PM             | 10,990                  | 518                  | -95.3%          | 19,942                  | 1,692                | -91.5%          |  |

<sup>\*</sup>Latent demand at some of entry nodes exceeds maximum value reported by CORSIM of 9,999. 9,999 is assumed for these nodes, however the latent demand exceeds this value.

### 6.0 Future Safety Analysis

#### 6.1 Quantitative Safety Analysis

The Highway Safety Manual procedures and historic crash data were used to quantitatively analyze the safety impacts of the No-Build and Build Alternatives. The quantitative safety analysis for the proposed Build Alternative conditions of converting a diamond interchange to a Diverging Diamond Interchange (DDI) follows the Countermeasure Crash Modification Factors (CMF) methodology and demonstrates the impact to the facility's safety within the AOI. The quantitative safety analysis complies with the guidelines of the FDOT Interchange Access Request User's Guide Safety Analysis Guidance in determining the estimated change in the expected number of crashes due to the proposed modifications of the project.

The Countermeasure CMF methodology utilizes CMFs to compute the expected number of crashes after implementing a selected countermeasure. CMFs were selected from the FHWA Crash Modification Factors Clearinghouse (www.cmfclearinghouse.org). The selected CMFs for the I-75/Gibsonton Interchange have a higher star rating than the minimum requirement of three stars to provide a greater level of confidence when estimating the safety performance by determining the reduction of crashes and the annual cost of the crash reduction. The CMF criteria for the selected Diverging Diamond Interchange countermeasure and reducible crash details are summarized in **Table 6.1.** 

Table 6.1: Crash Reduction Factor Application

| Location  | Improvement | CRF ID <sup>1</sup> | Stars | CRF   | Crash<br>Types<br>Impacted | Severity | Number of<br>Reducible<br>Crashes | Total<br>Reduced<br>Crashes | Crash<br>Reduction<br>Per Year |
|-----------|-------------|---------------------|-------|-------|----------------------------|----------|-----------------------------------|-----------------------------|--------------------------------|
| Ramp      | Diverging   |                     |       |       |                            |          |                                   |                             |                                |
| Terminals | Diamond     | 10761               | 4     | 14.2% | All Types                  | All      | 113                               | 16                          | 3.2                            |
| and Ramps | Interchange |                     |       |       |                            |          |                                   |                             |                                |

<sup>1</sup> CRF Source: https://www.cmfclearinghouse.org/

Using procedures from the Highway Safety Manual (HSM), all collisions associated with the ramp terminals and ramps are expected to be reduced by up to 14.2 percent and provide a 3.2 crash reduction per year. The CMF Details are presented in **Appendix M**.

#### 6.2 Qualitative Safety Analysis

While the conversion of a Diamond Interchange into a Diverging Diamond interchange was able to be quantified for us in the estimation of crash reduction for the project, some improvements lack research to provide CRFs but still provide safety improvements that require examination. The three most notable improvements with no associated CRF are the impacts of the construction of a new two-lane westbound to northbound on-ramp, modification of the existing I-75 single lane northbound off-ramp to a two-lane off ramp, and the modification of the existing I-75 single lane southbound off-ramp to a two-lane off ramp.

The northbound on-ramp, northbound off-ramp, and the southbound off-ramp experienced low crash frequencies under the existing conditions. The most common crash type being overturn/rollover crashes occurring under dark conditions. Additionally, the northbound on-ramp during the AM peak hour and the southbound off-ramp during the PM peak hour are nearing capacity limits affecting flow and driving behaviors. Under the Build Alternative, additional lighting will improve roadway conditions and the additional lane at each ramp is anticipated to improve AM and PM peak hours improving flow and safety through the interchange.

# 7.0 Coordination/Consistency with Other Plans/Projects

The I-75 Gibsonton Drive IMR is consistent with the FDOT's Work Program planned and ongoing projects within the study area, as listed in Section 1.5. Several planned maintenance, Transportation Systems Management and Operations (TSM&O), and Hillsborough County projects that are in various stages may influence the study area are listed as follows:

- I-75 PD&E Study from Moccasin Wallow Road to south of US 301 (WPID: 419235-2)
- Gibsonton Drive and Fern Hill Drive intersection improvements (WPID: 439772-1)
- Gibsonton Drive from I-75 to US 301 widening (Hillsborough County Cost Feasible Major Roadway Projects for 2025-2045)

Improvements to this interchange have local government support and are included in the Hillsborough County Metropolitan Planning Organization (MPO) 2045 Long Range Transportation Plan (LRTP), as it indicates the I-75 interchange at Gibsonton Drive as being a top regional priority for future funding.

### 8.0 Environmental Considerations

The I-75 and Gibsonton Drive interchange is located within the Gibsonton/Riverview area, which is rapidly developing and has limited natural habitat. Based on the National Wetlands Inventory (NWI) and the Southwest Florida Water Management District (SWFWMD) 2017 land-use and land cover data, there are four (4) wetland systems located within the in-fields of the interchange: three (3) freshwater marshes (FLUCFCS: 641; USFWS code: PEM1/SS1C) are located within the northwest, northeast, and southeast quadrants of the interchange and one (1) wet prairie (FLUCFCS: 643; USFWS code: PSS1C) is located within the southwest quadrant of the interchange. Two (2) reservoirs (FLUCFCS: 534; USFWS code: PUBHx), are located along the northbound and southbound off-ramps. There are various wet ditches (FLUCFCS: 510; USFWS code: PEM1Cx) located adjacent to the on-ramps and off-ramps surrounding the interchange. In addition to wetlands and other surface water systems, the Alafia River is located approximately 0.31 miles north of the interchange.

The wetlands present throughout the interchange could provide suitable habitat for various wading birds. However, due to the adjacent development and the low quality of the wetland systems present, the potential for protected species involvement is low.

### 9.0 Anticipated Design Variations

The design for the Build Alternative, being proposed as part of the I-75 Gibsonton Drive IMR, is expected to follow FDOT and FHWA policies, rules, and standards. Design exceptions and variations are not anticipated for this project. Should any discrepancies be identified during the development of this project, design exceptions and variations will be processed per FDOT and FHWA Guidelines during the design phase of the project

### 10.0 Conceptual Signing Plan

A conceptual signing and marking plan were prepared in accordance with FHWA and with the Manual on Uniform Traffic Control (MUTCD) guidelines for the Build Alternative. The signing plan establishes the locations and types of advanced signing to be installed under the proposed Build DDI configuration. The conceptual signing plan also details existing signs, relocated signs and proposed signs anticipated as part of the interchange's reconfiguration. The conceptual signing plan is provided in **Appendix N** and may be subject to change for construction within the final design plans.

### 11.0 Access Management

This IMR documents the access management provided by the future traffic operations evaluations as part of the Build Alternative. The Build Alternative evaluation resulted in easier access to the interstate due to the following reasons:

- An additional northbound I-75 entrance ramp provides a separate merge area and increasing the number of entrance and exit ramps from four to five.
- Motorists travelling on Gibsonton Drive do not have to cross opposing traffic to make a left turn within the DDI.
- The new traffic signal at the northbound I-75 ramp terminal will be coordinated with the southbound I-75 ramp terminal and will operate with two-phases.
- Intuitive advance warning signs, pavement markings, and easily accessible ingress and egress points will be incorporated.
- Intersection improvements at Gibsonton Drive and Fern Hill Drive facilitates increased local trips.
- Sidewalks and marked crosswalks will be provided to assist pedestrians in safely navigating the interchange.

The access management within the AOI will not be changed by the proposed operational and safety improvements. Therefore, an Access Management Plan or any update to an already existing Access Management Plan was not completed for this IMR.

### 12.0 FHWA Policy Points

This IMR follows the FHWA's Policy on Access to the Interstate System requirements for the justification and documentation needed to substantiate any proposed changes in access to the Interstate System. The Interstate System provides a key role in facilitating the distribution of goods and services sustaining the economic health, mobility and safety of a region and state. As part of the United States transportation system that provides access to local highways using a network of limited access freeways, it is important to invest in the preservation and enhancement of the Interstate System to meet the needs of the 21st century. All new or modified points of access must be approved by FHWA and developed in accordance with federal laws and regulations (as specified in 23 U.S.C. 109 and 111, 23 C.F.R. 625.4, and 49 C.F.R. 1.48(b)(1)). The following sections document the adherence of the proposed improvements to the two FHWA Policy Criteria (effective as of May 22, 2017).

#### Policy Point 1

An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

#### Satisfaction of Policy Point 1

An operational and safety analysis was conducted to evaluate the Build and No-Build Alternatives. The Build Alternative consists primarily of reconstructing the current Diamond Interchange to a Diverging Diamond Interchange along with improvements at New East Bay Road and Fern Hill Drive while the No-Build Alternative maintains the current I-75 and Gibsonton Drive Diamond Interchange configuration, existing year (2020) lane configuration and traffic control, with the committed improvements at south leg of Fern Hill at the study intersections within the AOI.

The CORSIM microsimulation results of the I-75 basic freeway segments and ramp merge/diverge areas for the Build Alternative indicate that during the design year (2045), serviced vehicles on southbound I-75 increase during both the AM and PM peak hours compared to the No-Build Alternative. No new segments of southbound I-75 fail due to the improvements made on Gibsonton Drive. Additionally, the segment of southbound I-75 north of Gibsonton Drive and the diverge segment at the southbound I-75 off-ramp to Gibsonton Drive show increases in speed and decreases in density under the Build Alternative.

Volume-to-capacity ratios were checked for each ramp of the I-75 at Gibsonton Drive interchange in the AM and PM time periods for the No-Build and Build Alternatives in the design year (2045). This check indicated that compared to the opening year (2025) No-Build Alternative, congestion is expected to increase, particularly on the northbound on-ramp from Gibsonton Drive, and the southbound off-ramp to Gibsonton Drive which will both fail during both peak periods in the design year (2045). Under the Build Alternative, the ramps will continue to operate under capacity during the design year (2045).

The CORSIM microsimulation results of the I-75 ramp terminals and cross-streets at Gibsonton Drive for the design year (2045) indicate that during the design year (2045), when comparing the No-Build and Build Alternatives, there are improvements throughout the network with serviced vehicles increasing at nearly every movement as congestion is relieved. In the Build Alternative, during the AM and PM peak hours, all four study intersections have an LOS of D or better. The reduction of maximum queue spillbacks under the Build Alternative is also largely mitigated with no queues exceeding the available storage lengths in the design year (2045).

During the design year (2045), the average speed increases by 37.1 percent during the AM peak period and by 44.8 percent during the PM peak period. The benefits of vehicles serviced is significant with an increase in vehicle miles traveled (under static demand volumes) of 31.3 percent during the AM peak period and 23.8 percent during the PM peak period. Latent demand will decrease by 80.0 percent during the AM peak period and by 91.5 percent during the PM peak period.

When examining FDOT crash modification factors between the No-Build and Build Alternatives, the proposed improvements are expected to improve safety along the corridor. With the proposed improvements under the Build Alternative, all collisions associated with the ramp terminals and ramps are expected to be reduced by up to 14.2 percent and provide a 3.2 crash reduction per year.

Based upon this analysis, the Build Alternative provides significant improvements to the network configuration that improve corridor operation, mitigate congestion, and enhance safety within the study AOI.

#### Policy Point 2

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

#### Satisfaction of Policy Point 2

The proposed Build Alternative will maintain full access to all traffic movements on Gibsonton Drive to and from I-75. The design will meet current standards for the projects on the interstate system and comply with the American Association of State Highway and Transportation Officials (AASHTO) and FDOT design standards. There are no design exceptions or variations to FDOT or FHWA policies, rules, or standards anticipated with the Build Alternative.

### 13.0 Summary and Conclusion

The purpose of this IOAR is to identify safety, operational, and geometric improvements to mitigate the existing safety and operational deficiencies for the I-75 and Gibsonton Drive interchange. The following are the key findings and conclusions of this IOAR:

#### **Existing Traffic Conditions:**

- AM and PM Peak Level of Service (LOS) indicate that southbound I-75 (north of Gibsonton Drive) and the southbound off-ramp failed to meet target LOS D. Further volume-to-capacity ratios check shows that that the southbound off-ramp is not capacity constrained and poor operation at this location causes congestion and queueing;
- The unsignalized eastbound left turn at the northbound I-75 ramp terminal will continue to be a primary contributor to congestion and cause spillback through the interchange, which results in queue spillbacks for the eastbound through movements at both ramp terminals during the AM peak hour;
- Gibsonton Drive fails to operate at target LOS D eastbound to the west of New East Bay Road (during the AM and PM Peak hours), eastbound between New East Bay Road and the southbound I-75 ramp terminal, eastbound between the ramp terminals (during the AM peak hour), and westbound from east of Fern Hill Drive to Fern Hill Drive (during the AM and PM peak hours). On average through the study area, both directions of Gibsonton Drive operate at LOS C or D based on the speed threshold; and
- Historical crash data, during the five-year period from 2016-2020, included a total of 557 crashes within the project study area. Of the 557 total crashes, there were three fatal crashes, 254 crashes involving personal injury, and 300 crashes that were property damage only. Crashes in the study area resulted in an estimated economic loss of approximately \$105.4 million. Multiple high crash roadway segments and intersections were identified within the AOI. The segment crash rates range from 0.255 crashes per million vehicle miles traveled (MVMT) (on the southbound I-75 roadway segment, north of the off-ramp to Gibsonton Drive) to a high of 4.462 crashes per MVMT (along the Gibsonton Drive roadway segment, between the I-75 northbound ramps and Fern Hill Drive). The intersection crash rates range from a low of 1.006 crashes per million entering vehicles (MEV) at the Gibsonton Drive and southbound I-75 ramp terminal to a high of 3.551 crashes per MEV at the Gibsonton Drive and Fern Hill Drive intersection.

#### **Future Traffic Conditions:**

No-Build Alternative:

Opening Year (2025):

- No-Build Alternative maintains the current I-75 and Gibsonton Drive Diamond Interchange configuration, existing year (2020) lane configuration and traffic control at the study intersections within the AOI;
- Additional transportation improvement includes three exclusive left turn lanes, one through and one exclusive right turn lane at the south leg of the Gibsonton Drive and Fern Hill Drive/Old Gibsonton Drive intersection.

#### Design Year (2045):

- No-Build Alternative is based on Opening Year No-Build Alternative;
- The construction of express lanes on I-75 from Moccasin Wallow Road to S of US 301.

#### **Build Alternative:**

#### Opening Year (2025):

- The Opening year (2025) Build Alternative includes of the current Diamond Interchange to a Diverging Diamond Interchange (DDI);
- Construction of a new 1,500-foot-long deceleration lane on I-75 northbound that becomes an exit lane to Gibsonton Drive, allowing the existing single lane exit to be converted to a twolane exit. The two-lane off-ramp widens to four lanes, providing dual left and right turn lanes onto Gibsonton Drive;
- Reconfiguring the Gibsonton Drive access to I-75 northbound by separating the eastbound traffic from the westbound traffic. Eastbound Gibsonton Drive traffic has dual left turn lanes onto the northbound I-75 on-ramp which merges in a single lane on-ramp and enters I-75 northbound as an add lane south of the Alafia River. Westbound Gibsonton Drive traffic has dual right turn lanes onto the northbound I-75 on-ramp carried by a new bridge over the Alafia River and merges with I-75 north of the Riverview Drive overpass;
- Providing additional capacity for the Gibsonton Drive westbound to I-75 northbound on-ramp by extending the existing lane and constructing an additional lane, prior to the Gibsonton Drive and Fern Hill Drive intersection, resulting in three westbound through lanes, one left turn lane to Fern Hill Drive, and two auxiliary lanes that become the dual right turn lanes onto I-75 northbound;
- Converting the existing I-75 southbound off-ramp from a single exit to a two-lane exit. The two-lane exit widens to six-lanes, providing three right turn lane and three left turn lanes;
- Reconfiguring the I-75 southbound on-ramp to merge exclusive turn lanes from eastbound and westbound Gibsonton Drive;
- Widening Gibsonton Drive from a four-lane divided arterial typical section to a six-lane divided arterial between New East Bay Road and east of Fern Hill Drive;
- Providing a third eastbound Gibsonton Drive thru lane at the New East Bay Road intersection;
- Installing new traffic signals at the two crossovers of the DDI;
- Modifying the traffic signal timings at New East Bay Road and Fern Hill Drive and coordinating with the new traffic signals at the DDI crossovers;
- Providing pedestrian accommodations including 6-foot-wide sidewalks and high emphasis crosswalks on both sides of Gibsonton Drive between New East Bay Road and Fern Hill Drive. A single 10-foot-wide sidewalk is provided in the median within the DDI limits while ensuring continuity through the corridor;
- Providing bicyclist accommodations including dedicated bicycle lanes along Gibsonton Drive eastbound and westbound between New East Bay Road and Fern Hill Drive. Bicycle bailouts have been proposed approaching the DDI crossovers to provide an option for the bike to utilize the 10-foot-wide sidewalk.

#### Design Year (2045):

- Design Year (2045) Build Alternative is based on Opening Year Build Alternative;
- Optimizing the traffic signal timings at New East Bay Road and Fern Hill Drive and coordinating with the new traffic signals at the DDI crossovers for the design Year (2045) demand traffic. During the design year (2045), the opening year (2025)'s timing no longer works as the network reaches saturation and so the cycle length of 150 seconds (to equal the DDI signals) is more appropriate and services the design year (2045) vehicles more efficiently with less flow breakdown, particularly on the westbound approach to New East Bay Road;
- The construction of express lanes on I-75 from Moccasin Wallow Road to S of US 301.

#### No-Build Alternative Operational Analysis:

- Congestion will continue to worsen on the southbound I-75, particularly north of Gibsonton Drive and southbound off-ramp. The results of volume-to-capacity ratios check indicate that the on-ramp to northbound I-75 and the off-ramp to Gibsonton Drive from southbound I-75 exceed the capacity of the ramp in the design year (2045);
- Gibsonton Drive will experience more approach movement delay and intersections failures in the opening year (2025) and design year (2045). The queue spillback of the eastbound left turn at the northbound I-75 ramp terminal will continue to worsen; and
- Overall travel speeds on Gibsonton Drive will continue to decrease as there is more congestion in the opening year (2025) and design year (2045). Some segments see a slight increase in speed. However, this is a function of decreased serviced volume and not due to improvements.

#### **Build Alternative Operational Analysis:**

- Based on the analyses documented in this IMR, the Build Alternative is expected to improve the operation and overall safety of the study intersections. The results of the CORSIM microsimulation analysis provide evidence of substantial benefits associated with implementing the Build Alternative;
- During both the AM and PM peak hours there are improvements to delay and LOS, particularly at the I-75 ramp terminals, which are no longer experiencing a failing LOS in the design year (2045);
- During the AM and PM peak hours, no new approaches or overall intersections will fail.
- During the AM peak hour, the number of failing approaches is reduced from nine to one and the number of failing intersections is reduced from two to zero;
- During the PM peak hour, the number of failing approaches is reduced from eight to two and the number of failing intersections is reduced from two to zero;
- Operational benefits under the Build Alternative were demonstrated by an increase in vehicle miles traveled and average speed. The increased vehicle miles traveled and average speeds for the opening year (2025) and design year (2045) were documented as follows:
  - During the opening year (2025) the average speed increases by 80.5 percent during the AM peak period and by 23.5 percent during the PM peak period. The vehicle miles traveled (under static demand volumes) increases by 21.9 percent during the AM peak period and 3.9 percent during the PM peak period;
  - During the design year (2045), the average speed increases by 37.1 percent during the AM peak period and by 44.8 percent during the PM peak period. The benefits of vehicles serviced is significant with an increase in vehicle miles traveled (under static

demand volumes) of 31.3 percent during the AM peak period and 23.8 percent during the PM peak period;

- The CORSIM microsimulation analysis indicates that more vehicles can be serviced with the improvements at the Gibsonton Drive interchange, delay and travel time are reduced, and speed is increased;
- The quantitative safety analysis provided additional safety benefits to the operational benefits for implementing the Build Alternative. Using procedures from the Highway Safety Manual (HSM), all collisions associated with the ramp terminals and ramps are expected to be reduced by up to 14.2 percent and provide a 3.2 crash reduction per year;
- Improvements to this interchange have local government support and are included in the Hillsborough County Metropolitan Planning Organization (MPO) 2045 Long Range Transportation Plan (LRTP), as it indicates the I-75 at Gibsonton Drive interchange as being a top regional priority for future funding;
- The proposed improvements under Build Alternative will not require the acquisition of any ROW. Therefore, it is anticipated there will be minimal to no natural, cultural, or socioeconomic impacts associated with implementing the proposed improvements;
- There are no anticipated design exceptions or variations to FDOT or FHWA policies, rules, or standards anticipated for this project, but if any exception/variation should arise it will be processed per FHWA and FDOT standards;
- The access management within the AOI of the I-75 and Gibsonton Drive interchange will not be changed by the proposed improvements to be implemented as part of the Build Alternative;
- Based upon this analysis, the proposed modifications under Build Alternative provide significant improvements to corridor operation, mitigate congestion, and enhance safety within the study AOI.

## **Appendices**

